Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 104201    DOI: 10.1088/1674-1056/25/10/104201

Two-dimensional atom localization induced by a squeezed vacuum

Fei Wang(王飞)1, Jun Xu(徐俊)2
1 College of Science, China Three Gorges University, Yichang 443002, China;
2 College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
Abstract  A scheme of two-dimensional (2D) atom localization induced by a squeezed vacuum is proposed, in which the three-level V-type atoms interact with two classical standing-wave fields. It is found that when the environment is changed from an ordinary vacuum to a squeezed vacuum, the 2D atom localization is realized by detecting the position-dependent resonance fluorescence spectrum. For comparison, we demonstrate that the atom localization originating from the quantum interference effect is distinct from that induced by a squeezed vacuum. Furthermore, the combined effects of the squeezed vacuum and quantum interference are also discussed under appropriate conditions. The internal physical mechanism is analyzed in terms of dressed-state representation.
Keywords:  atom localization      squeezed vacuum      resonance fluorescence  
Received:  31 December 2015      Revised:  14 June 2016      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574179 and 11204099) and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFC1148).
Corresponding Authors:  Fei Wang     E-mail:

Cite this article: 

Fei Wang(王飞), Jun Xu(徐俊) Two-dimensional atom localization induced by a squeezed vacuum 2016 Chin. Phys. B 25 104201

[1] Metcalf H and Vander Straten P 1994 Phys. Rep. 244 204
[2] Chu S 1998 Rev. Mod. Phys. 70 685
[3] Phillips W D 1998 Rev. Mod. Phys. 70 721
[4] Collins G P 1996 Phys. Today 49 18
[5] Wu Y and Côté R 2002 Phys. Rev. A 65 053603
[6] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[7] Johnson K S, Thywissen J H, Dekker W H, Berggren K K, Chu A P, Younkin R and Prentiss M 1998 Science 280 1583
[8] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P and Dowling J P 2000 Phys. Rev. Lett. 85 2733
[9] Storey P, Collett M and Walls D 1992 Phys. Rev. Lett. 68 472
[10] Storey P, Collett M and Walls D 1993 Phys. Rev. A 47 405
[11] Quadt R, Collett M and Walls D F 1995 Phys. Rev. Lett. 74 351
[12] Kunze S, Dieckmann K and Rempe G 1997 Phys. Rev. Lett. 78 2038
[13] Kunze S, Rempe G and Wilkens M 1994 Europhys. Lett. 27 115
[14] Thomas J E and Wang L J 1995 Phys. Rep. 262 311
[15] Rudy P, Ejnisman R and Bigelow N P 1997 Phys. Rev. Lett. 78 4906
[16] Arimondo E 1996 in Progress in Optics, Vol. 35, ed. Wolf E (Amsterdam: Elsevier Science) pp. 257-354
[17] Harris S E, Field J E and Imamoğlu A 1990 Phys. Rev. Lett. 64 1107
[18] Marangos J P 1998 J. Mod. Opt. 45 471
[19] Lukin M D and Imamoglu A 2001 Nature 413 273
[20] Wang X X, Sun J X, Sun Y H, Li A J, Chen Y, Zhang X J, Kang Z H, Wang L, Wang H H and Gao J Y 2015 Chin. Phys. B 24 074204
[21] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[22] Wu Y, Saldana J and Zhu Y F 2003 Phys. Rev. A 67 013811
[23] Wu Y and Yang X X 2005 Phys. Rev. A 71 053806
[24] Zhu S Y and Scully M O 1996 Phys. Rev. Lett. 76 388
[25] Paspalakis E and Knight P L 1998 Phys. Rev. Lett. 81 293
[26] Keitel C H 1999 Phys. Rev. Lett. 83 1307
[27] Wang H, Goorskey D and Xiao M 2001 Phys. Rev. Lett. 87 073601
[28] Wu Y and Yang X 2007 Appl. Phys. Lett. 91 094104
[29] Zhang X, Hu X M, Zhang X H and Wang F 2010 Chin. Phys. B 19 124204
[30] Xiong H, Scully M O and Zubairy M S 2005 Phys. Rev. Lett. 94 023601
[31] Wang F, Hu X M, Shi W X and Zhu Y Z 2010 Phys. Rev. A 81 033836
[32] Qamar S, Zhu S Y and Zubairy M S 2000 Phys. Rev. A 61 063806
[33] Herkommer A M, Schleich W P and Zubairy M S 1997 J. Mod. Opt. 44 2507
[34] Paspalakis E and Knight P L 2001 Phys. Rev. A 63 065802
[35] Sahrai M, Tajalli H, Kapale K T and Zubairy M S 2005 Phys. Rev. A 72 013820
[36] Liu C P, Gong S Q, Cheng D C, Fan X J and Xu Z Z 2006 Phys. Rev. A 73 025801
[37] Qamar S, Mehmood A and Qamar S 2009 9 Phys. Rev. A 79 033848
[38] Xu J and Hu X M 2007 Phys. Rev. A 76 013830
[39] Xu J and Hu X M 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1451
[40] Ivanov V and Rozhdestvensky Y 2010 Phys. Rev. A 81 033809
[41] Wan R G, Kou J, Jiang L, Jiang Y and Gao J Y 2011 J. Opt. Soc. Am. B 28 622
[42] Wan R G, Kou J, Jiang L, Jiang Y and Gao J Y 2011 J. Opt. Soc. Am. B 28 10
[43] Ding C L, Li J H, Zhan Z M and Yang X X 2011 Phys. Rev. A 83 063834
[44] Ding C L, Li J H, R Yu, Hao X Y and Wu Y 2012 Opt. Express 20 7870
[45] Gardiner C W 1986 Phys. Rev. Lett. 56 1917
[46] Smart S and Swain S 1992 Phys. Rev. A 45 6857
[47] Swain S and Zhou P 1995 Phys. Rev. A 52 4845
[48] Carmichael H J, Lane A S and Walls D F 1987 J. Mod. Opt. 34 821
[49] Ficek Z, Smyth W S and Swain S 1995 Phys. Rev. A 52 4126
[50] Ficek Z and Drummond P D 1991 Phys. Rev. A 43 6247
[51] Buzek V, Knight P L and Kudryavtsev I K 1991 Phys. Rev. A 44 1931
[52] Bostick M, Ficek Z and Dalton B J 1996 Phys. Rev. A 53 4439
[53] Carreño F, Antón M A and Calderón Oscar G 2003 Opt. Commun. 221 365
[54] Antón M A, Calderón Oscar G and Carreño F 2003 Phys. Lett. A 311 297
[55] Carreño F, Antón M A and Calderón Oscar G 2004 J. Opt. B 6 315
[56] Antón M A, Calderón Oscar G and Carreño F 2004 Phys. Rev. A 69 023801
[57] Agarwal G S 1974 Quantum Optics, Springer Tracts in Modern Physiscs, Vol. 70 (Berlin: Springer)
[58] Scully M O and Zubairy M S 1997 Quantum Optics (London: Cambridge University Press)
[59] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer)
[60] Lax M 1968 Phys. Rev. 172 350
[61] Zhou P and Swain S 1997 Phys. Rev. A 56 3011
[62] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1992 Atom-Photon Interactions (New York: Wiley)
[1] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[2] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
[3] High-precision three-dimensional atom localization via probe absorption at room temperature
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Dingyu Cai(蔡定宇), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2020, 29(12): 124205.
[4] High-dimensional atomic microscopy in surface plasmon polaritons
Akhtar Munir, Abdul Wahab, and Munsif Jan. Chin. Phys. B, 2020, 29(12): 124204.
[5] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[6] Super-resolution and super-sensitivity of entangled squeezed vacuum state using optimal detection strategy
Jiandong Zhang(张建东), Zijing Zhang(张子静), Longzhu Cen(岑龙柱), Shuo Li(李硕), Yuan Zhao(赵远), Feng Wang(王峰). Chin. Phys. B, 2017, 26(9): 094204.
[7] Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm
Yong-Zhou Xue(薛永洲), Ze-Sheng Chen(陈泽升), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川), De-Sheng Jiang(江德生), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权). Chin. Phys. B, 2017, 26(8): 084202.
[8] Generation of squeezed vacuum on cesium D2 line down to kilohertz range
Jian-Feng Tian(田剑锋), Guan-Hua Zuo(左冠华), Yu-Chi Zhang(张玉驰), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2017, 26(12): 124206.
[9] Statistical properties of coherent photon-subtracted two-mode squeezed vacuum and its application in quantum teleportation
Zhang Guo-Ping (张国平), Zheng Kai-Min (郑凯敏), Liu Shi-You (刘世右), Hu Li-Yun (胡利云). Chin. Phys. B, 2014, 23(5): 050301.
[10] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[11] Generation of a continuous-wave squeezed vacuum state at 1.3 μm by employing a home-made all-solid-state laser as pump source
Zheng Yao-Hui (郑耀辉), Wu Zhi-Qiang (邬志强), Huo Mei-Ru (霍美茹), Zhou Hai-Jun (周海军). Chin. Phys. B, 2013, 22(9): 094206.
[12] Coherent effect of triple-resonant optical parametric amplification inside a cavity with injection of a squeezed vacuum field
Di Ke (邸克), Zhang Jing (张靖). Chin. Phys. B, 2013, 22(9): 094205.
[13] Two-dimensional atom localization via probe absorption in a four-level atomic system
Wang Zhi-Ping (王志平), Ge Qiang (葛强), Ruan Yu-Hua (阮于华), Yu Ben-Li (俞本立). Chin. Phys. B, 2013, 22(7): 074203.
[14] High-precision two-dimensional atom localization via probe absorption in M-scheme atomic system
Wu Jian-Chun (吴建春), Liu Zheng-Dong (刘正东), Zheng Jun (郑军). Chin. Phys. B, 2013, 22(4): 044203.
[15] Observation of linewidth narrowing due to a spontaneously generated coherence effect
Tian Si-Cong(田思聪), Wang Chun-Liang(王春亮), Kang Zhi-Hui(康智慧), Yang Xiu-Bin(杨秀彬) Wan Ren-Gang(万仁刚), Zhang Xiao-Jun(张晓军), Zhang Hang(张航), Jiang Yun(姜云), Cui Hai-Ning(崔海宁), and Gao Jin-Yue(高锦岳) . Chin. Phys. B, 2012, 21(6): 064206.
No Suggested Reading articles found!