ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Two-dimensional atom localization induced by a squeezed vacuum |
Fei Wang(王飞)1, Jun Xu(徐俊)2 |
1 College of Science, China Three Gorges University, Yichang 443002, China; 2 College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China |
|
|
Abstract A scheme of two-dimensional (2D) atom localization induced by a squeezed vacuum is proposed, in which the three-level V-type atoms interact with two classical standing-wave fields. It is found that when the environment is changed from an ordinary vacuum to a squeezed vacuum, the 2D atom localization is realized by detecting the position-dependent resonance fluorescence spectrum. For comparison, we demonstrate that the atom localization originating from the quantum interference effect is distinct from that induced by a squeezed vacuum. Furthermore, the combined effects of the squeezed vacuum and quantum interference are also discussed under appropriate conditions. The internal physical mechanism is analyzed in terms of dressed-state representation.
|
Received: 31 December 2015
Revised: 14 June 2016
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574179 and 11204099) and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFC1148). |
Corresponding Authors:
Fei Wang
E-mail: feiwang202@163.com
|
Cite this article:
Fei Wang(王飞), Jun Xu(徐俊) Two-dimensional atom localization induced by a squeezed vacuum 2016 Chin. Phys. B 25 104201
|
[1] |
Metcalf H and Vander Straten P 1994 Phys. Rep. 244 204
|
[2] |
Chu S 1998 Rev. Mod. Phys. 70 685
|
[3] |
Phillips W D 1998 Rev. Mod. Phys. 70 721
|
[4] |
Collins G P 1996 Phys. Today 49 18
|
[5] |
Wu Y and Côté R 2002 Phys. Rev. A 65 053603
|
[6] |
Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
|
[7] |
Johnson K S, Thywissen J H, Dekker W H, Berggren K K, Chu A P, Younkin R and Prentiss M 1998 Science 280 1583
|
[8] |
Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P and Dowling J P 2000 Phys. Rev. Lett. 85 2733
|
[9] |
Storey P, Collett M and Walls D 1992 Phys. Rev. Lett. 68 472
|
[10] |
Storey P, Collett M and Walls D 1993 Phys. Rev. A 47 405
|
[11] |
Quadt R, Collett M and Walls D F 1995 Phys. Rev. Lett. 74 351
|
[12] |
Kunze S, Dieckmann K and Rempe G 1997 Phys. Rev. Lett. 78 2038
|
[13] |
Kunze S, Rempe G and Wilkens M 1994 Europhys. Lett. 27 115
|
[14] |
Thomas J E and Wang L J 1995 Phys. Rep. 262 311
|
[15] |
Rudy P, Ejnisman R and Bigelow N P 1997 Phys. Rev. Lett. 78 4906
|
[16] |
Arimondo E 1996 in Progress in Optics, Vol. 35, ed. Wolf E (Amsterdam: Elsevier Science) pp. 257-354
|
[17] |
Harris S E, Field J E and Imamoğlu A 1990 Phys. Rev. Lett. 64 1107
|
[18] |
Marangos J P 1998 J. Mod. Opt. 45 471
|
[19] |
Lukin M D and Imamoglu A 2001 Nature 413 273
|
[20] |
Wang X X, Sun J X, Sun Y H, Li A J, Chen Y, Zhang X J, Kang Z H, Wang L, Wang H H and Gao J Y 2015 Chin. Phys. B 24 074204
|
[21] |
Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
|
[22] |
Wu Y, Saldana J and Zhu Y F 2003 Phys. Rev. A 67 013811
|
[23] |
Wu Y and Yang X X 2005 Phys. Rev. A 71 053806
|
[24] |
Zhu S Y and Scully M O 1996 Phys. Rev. Lett. 76 388
|
[25] |
Paspalakis E and Knight P L 1998 Phys. Rev. Lett. 81 293
|
[26] |
Keitel C H 1999 Phys. Rev. Lett. 83 1307
|
[27] |
Wang H, Goorskey D and Xiao M 2001 Phys. Rev. Lett. 87 073601
|
[28] |
Wu Y and Yang X 2007 Appl. Phys. Lett. 91 094104
|
[29] |
Zhang X, Hu X M, Zhang X H and Wang F 2010 Chin. Phys. B 19 124204
|
[30] |
Xiong H, Scully M O and Zubairy M S 2005 Phys. Rev. Lett. 94 023601
|
[31] |
Wang F, Hu X M, Shi W X and Zhu Y Z 2010 Phys. Rev. A 81 033836
|
[32] |
Qamar S, Zhu S Y and Zubairy M S 2000 Phys. Rev. A 61 063806
|
[33] |
Herkommer A M, Schleich W P and Zubairy M S 1997 J. Mod. Opt. 44 2507
|
[34] |
Paspalakis E and Knight P L 2001 Phys. Rev. A 63 065802
|
[35] |
Sahrai M, Tajalli H, Kapale K T and Zubairy M S 2005 Phys. Rev. A 72 013820
|
[36] |
Liu C P, Gong S Q, Cheng D C, Fan X J and Xu Z Z 2006 Phys. Rev. A 73 025801
|
[37] |
Qamar S, Mehmood A and Qamar S 2009 9 Phys. Rev. A 79 033848
|
[38] |
Xu J and Hu X M 2007 Phys. Rev. A 76 013830
|
[39] |
Xu J and Hu X M 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1451
|
[40] |
Ivanov V and Rozhdestvensky Y 2010 Phys. Rev. A 81 033809
|
[41] |
Wan R G, Kou J, Jiang L, Jiang Y and Gao J Y 2011 J. Opt. Soc. Am. B 28 622
|
[42] |
Wan R G, Kou J, Jiang L, Jiang Y and Gao J Y 2011 J. Opt. Soc. Am. B 28 10
|
[43] |
Ding C L, Li J H, Zhan Z M and Yang X X 2011 Phys. Rev. A 83 063834
|
[44] |
Ding C L, Li J H, R Yu, Hao X Y and Wu Y 2012 Opt. Express 20 7870
|
[45] |
Gardiner C W 1986 Phys. Rev. Lett. 56 1917
|
[46] |
Smart S and Swain S 1992 Phys. Rev. A 45 6857
|
[47] |
Swain S and Zhou P 1995 Phys. Rev. A 52 4845
|
[48] |
Carmichael H J, Lane A S and Walls D F 1987 J. Mod. Opt. 34 821
|
[49] |
Ficek Z, Smyth W S and Swain S 1995 Phys. Rev. A 52 4126
|
[50] |
Ficek Z and Drummond P D 1991 Phys. Rev. A 43 6247
|
[51] |
Buzek V, Knight P L and Kudryavtsev I K 1991 Phys. Rev. A 44 1931
|
[52] |
Bostick M, Ficek Z and Dalton B J 1996 Phys. Rev. A 53 4439
|
[53] |
Carreño F, Antón M A and Calderón Oscar G 2003 Opt. Commun. 221 365
|
[54] |
Antón M A, Calderón Oscar G and Carreño F 2003 Phys. Lett. A 311 297
|
[55] |
Carreño F, Antón M A and Calderón Oscar G 2004 J. Opt. B 6 315
|
[56] |
Antón M A, Calderón Oscar G and Carreño F 2004 Phys. Rev. A 69 023801
|
[57] |
Agarwal G S 1974 Quantum Optics, Springer Tracts in Modern Physiscs, Vol. 70 (Berlin: Springer)
|
[58] |
Scully M O and Zubairy M S 1997 Quantum Optics (London: Cambridge University Press)
|
[59] |
Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer)
|
[60] |
Lax M 1968 Phys. Rev. 172 350
|
[61] |
Zhou P and Swain S 1997 Phys. Rev. A 56 3011
|
[62] |
Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1992 Atom-Photon Interactions (New York: Wiley)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|