Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 064207    DOI: 10.1088/1674-1056/21/6/064207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Photon-number distribution of two-mode squeezed thermal states by entangled state representation

Hu Li-Yun(胡利云)a)b)†, Wang Shuai(王帅)c), and Zhang Zhi-Ming(张智明) b)‡ger
a. College of Physics & Communication Electronics, Jiangxi Normal University, Nanchang 330022, China;
b. Laboratory of Nanophotonic Functional Materials and Devices, SIPSE & LQIT,South China Normal University, Guangzhou 510006, China;
c. Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China
Abstract  Using the entangled state representation, we convert a two-mode squeezed number state to a Hermite polynomial excited squeezed vacuum state. We first analytically derive the photon number distribution of the two-mode squeezed thermal states. It is found that it is a Jacobi polynomial; a remarkable result. This result can be directly applied to obtaining the photon number distribution of non-Gaussian states generated by subtracting from (adding to) two-mode squeezed thermal states.
Keywords:  entangled state representation      Hermite polynomial excited state      squeezed thermal states      photon-number distribution  
Received:  01 November 2011      Revised:  14 December 2011      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Wj (State reconstruction, quantum tomography)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11047133, 60978009, and 10774088), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the ''973" Project (Grant No. 2011CBA00200), and the Natural Science Foundation of Jiangxi Province of China (No. 2010GQW0027), and the Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University.
Corresponding Authors:  Hu Li-Yun, Zhang Zhi-Ming     E-mail:  hlyun2008@126.com; zmzhang@scnu.edu.cn

Cite this article: 

Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) Photon-number distribution of two-mode squeezed thermal states by entangled state representation 2012 Chin. Phys. B 21 064207

[1] Scully M O, Zubairy M. S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[2] Dodonov V V 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1
[3] Slusher R E, Yurke B, Mertz J C, Valley J F and Hollberg L W 1985 Phys. Rev. Lett. 55 2409
[4] Wu L A, Kimble J L, Hall J L and Wu H F 1986 Phys. Rev. Lett. 57 2520
[5] de Almeida N G, Serra R M, Villas-Boas C J and Moussa M H Y 2004 Phys. Rev. A 69 035802
[6] Barnett S M and Radmore P M 1997 Methods in Theoretical Quantum Optics (Oxford: Clarendon Press)
[7] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[8] Wunsche A 2001 J. Comput. Appl. Math. 133 665
[9] Wunsche A 2000 J. Phys. A: Math. Gen. 33 1603
[10] Hu L Y and Fan H Y 2008 J. Mod. Opt. 55 2011
[11] Hu L Y and Fan H Y 2008 Commun. Theor. Phys. 50 965
[12] Magnus W, Oberhettinger F and Soni R P 1996 Formulas and Theorems for the Special Functions of Mathematical Physics (Berlin-Heidelberg-New York: Springer)
[13] Hu L Y, Xu X X and Fan H Y 2010 J. Opt. Soc. Am. B 27 286
[14] Hu L Y, Wang Z S, Kwek L C and Fan H Y 2011 Chin. Phys. B 20 084203
[15] Hu L Y and Fan H Y 2010 Chin. Phys. B 19 074205
[1] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[2] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[3] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[4] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[5] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[6] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[7] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰). Chin. Phys. B, 2013, 22(8): 080301.
[8] New operator identities regarding to two-variable Hermite polynomial by virtue of entangled state representation
Yuan Hong-Chun (袁洪春), Li Heng-Mei (李恒梅), Xu Xue-Fen (许雪芬). Chin. Phys. B, 2013, 22(6): 060301.
[9] Squeezing entangled state of two particles with unequal masses
Yang Yang (杨阳), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(3): 030306.
[10] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[11] New formulas for normalizing photon-added (-subtracted) two-mode squeezed thermal states
Hu Li-Yun (胡利云), Fan Hong-Yi (范洪义), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2013, 22(3): 034202.
[12] Squeeze-swapping by Bell measurement studied in terms of the entangled state representation
Li Xue-Chao (李学超), Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义 ). Chin. Phys. B, 2012, 21(8): 080304.
[13] Oscillation behaviour in the photon-number distribution of squeezed coherent states
Wang Shuai(王帅), Zhang Xiao-Yan(张晓燕), and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2012, 21(5): 054206.
[14] Phase-sensitive nonclassical properties of photon-added-then-subtracted coherent squeezed states
Liu Gang (刘刚), Wu Mu-Sheng (吴木生), Hu Li-Yun (胡利云 ). Chin. Phys. B, 2012, 21(11): 114205.
[15] The Fresnel–Weyl complementary transformation
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2012, 21(10): 100302.
No Suggested Reading articles found!