ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Phase control of light amplification in steady and transient processes in an inverted-Y atomic system with spontaneously generated coherence |
Tian Si-Cong (田思聪)a, Tong Cun-Zhu (佟存柱)a, Wan Ren-Gang (万仁刚)c, Ning Yong-Qiang (宁永强)a, Qin Li (秦丽)a, Liu Yun (刘云)a, Wang Li-Jun (王立军)a, Zhang Hang (张航)a, Wang Zeng-Bin (王增斌)d, Gao Jin-Yue (高锦岳)b |
a State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; b State Key Laboratory of Coherent Light and Atomic and Molecular Spectroscopy of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China; c State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China; d Quantum Engineering Center, Beijng Institute of Control Devices, Beijing 100854, China |
|
|
Abstract We investigate the effects of spontaneously generated coherence (SGC) on both the steady and transient gain properties in a four-level inverted-Y-type atomic system in the presence of a weak probe, two strong coherent fields, and an incoherent pump. For the steady process, we find that the inversionless gain mainly origins from SGC. In particular, we can modulate the inversionless gain by changing the relative phase between the two fields. Moreover, the amplitude of the gain peak can be enhanced and the additional gain peak can appear by changing the detuning of the coupling field. As for the transient process, the transient gain properties can also be dramatically affected by the SGC. Compared to the case without SGC, the transient gain can be greatly enhanced with completely eliminated transient absorption by choosing the proper relative phase between the two fields. And the inverted-Y-type system with SGC can be simulated in both atomic and semiconductor quantum well systems avoiding the conditions of SGC.
|
Received: 05 August 2013
Revised: 16 September 2013
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
78.67.De
|
(Quantum wells)
|
|
Corresponding Authors:
Gao Jin-Yue
E-mail: jygao@mail.jlu.edu.cn
|
About author: 42.50.Gy; 42.50.Hz; 78.67.De |
Cite this article:
Tian Si-Cong (田思聪), Tong Cun-Zhu (佟存柱), Wan Ren-Gang (万仁刚), Ning Yong-Qiang (宁永强), Qin Li (秦丽), Liu Yun (刘云), Wang Li-Jun (王立军), Zhang Hang (张航), Wang Zeng-Bin (王增斌), Gao Jin-Yue (高锦岳) Phase control of light amplification in steady and transient processes in an inverted-Y atomic system with spontaneously generated coherence 2014 Chin. Phys. B 23 044205
|
[1] |
Scully M O, Zhu S Y and Gavrielides A 1989 Phys. Rev. Lett. 62 2813
|
[2] |
Imamoglu A, Field J E and Harris S E 1991 Phys. Rev. Lett. 66 1154
|
[3] |
Harris S E 1989 Phys. Rev. Lett. 62 1033
|
[4] |
Harris S E and Macklin J J 1989 Phys. Rev. A 40 4135
|
[5] |
Gao J Y, Guo C, Guo X Z, Jin G X, Wang P W, Zhao J, Zhang H Z, Jiang Y, Wang D Z and Jiang D M 1992 Opt. Commun. 93 323
|
[6] |
Zibrov A S, Lukin M D, Nikonov D E, Hollberg L, Scully M O, Velichansky V L and Robinson H G 1995 Phys. Rev. Lett. 75 1499.
|
[7] |
Padmabandu G G, Welch G R, Shubin I N, Fry E S, Nikonov D E, Lukin M D, and Scully M O 1996 Phys. Rev. Lett. 76 2053
|
[8] |
Mompart J and Corbalan R 2000 J. Opt. B: Quantum Semiclass. Opt. 2 R7
|
[9] |
Wu H B, Xiao M and Gea-Banacloche J 2008 Phys. Rev. A 78 041802(R)
|
[10] |
Kilin S Y, Kapale K T and Scully M O 2008 Phys. Rev. Lett. 100 173601
|
[11] |
Scully M O 2010 Phys. Rev. Lett. 104 207701
|
[12] |
Dorfman K E, Jha P K and Das S 2011 Phys. Rev. A 84 053803
|
[13] |
Frogley M D, Dynes J F, Beck M, Faist J and Philips C C 2006 Nat. Mater. 5 175
|
[14] |
Zhou P and Swain S 1997 Phys. Rev. Lett. 78 832
|
[15] |
Agarwal G S 1974 Quamtum Optics: Springer Tracts in Modern Physics, Vol. 70 (Berlin: Spriger-Verlag)
|
[16] |
Zhu S Y and Scully M O 1996 Phys. Rev. Lett. 76 388
|
[17] |
Zhou P and Swain S 1996 Phys. Rev. Lett. 77 3995
|
[18] |
Paspalakis E, Kylstra N J and Knight P L 1999 Phys. Rev. Lett. 82 2079
|
[19] |
Tang Z H, Li G X and Ficek Z 2010 Phys. Rev. A 82 063837
|
[20] |
Bennet C H and Divincenzo D P 2000 Nature 404 247
|
[21] |
Bajcsy M, Hofferberth S, Balic V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V and Lukin M D 2009 Phys. Rev. Lett. 102 203902
|
[22] |
Postavaru O, Harman Z and Keitel C H 2011 Phys. Rev. Lett. 106 033001
|
[23] |
Menon S and Agarwal G S 1998 Phys. Rev. A 57 4014
|
[24] |
Menon S and Agarwal G S 1999 Phys. Rev. A 61 013807
|
[25] |
Dutta S and Dastidar K R 2006 J. Phys. B: At. Mol. Opt. Phys. 39 4525
|
[26] |
Cui N, Fan X J, Li A Y, Liu C P, Gong S Q and Xu Z Z 2007 Chin. Phys. 16 718
|
[27] |
Wu J H and Gao J Y 2002 Phys. Rev. A 65 063807
|
[28] |
Bai Y F, Guo H, Sun H, Han D G, Liu C and Chen X Z 2004 Phys. Rev. A 69 043814
|
[29] |
Wu J H, Zhang H F and Gao J Y 2003 Opt. Lett. 28 654
|
[30] |
Hou B P, Wang S J, Yu W L and Sun W L 2004 Phys. Rev. A 69 053805
|
[31] |
Hou B P, Wang S J, Yu W L and Sun W L 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2335
|
[32] |
Xu W H, Wu J H and Gao J Y 2007 Chin. Phys. 16 441
|
[33] |
Fan X J, Liu Z B, Liang Y, Jia K N and Tong D M 2011 Phys. Rev. A 83 043805
|
[34] |
Xu W H, Wu J H and Gao J Y 2002 Phys. Rev. A 66 063812
|
[35] |
Sahrai M and Mahmoudi M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235503
|
[36] |
Fan X J, Liang B, Wang Z D and Tong D M 2010 Opt. Commun. 283 1810
|
[37] |
Dawes A M C, Illing L, Clark S M and Gauthier D J 2005 Science 308 672
|
[38] |
Yan M, Rickey E G and Zhu Y F 2001 Phys. Rev. A 64 043807
|
[39] |
Joshi A and Xiao M 2003 Phys. Lett. A 317 370
|
[40] |
Joshi A and Xiao M 2005 Phys. Rev. A 71 041801(R)
|
[41] |
Joshi A and Xiao M 2006 Phys. Rev. A 74 052318
|
[42] |
Wen J M, Du S W, Zhang Y P, Xiao M and Rubin M H 2008 Phys. Rev. A 77 033816
|
[43] |
Kou J, Wan R G, Kang Z H, Wang H H, Jiang L, Zhang X J, Jiang Y and Gao J Y 2010 J. Opt. Soc. Am. B 27 2035
|
[44] |
Imamoğlu A 1989 Phys. Rev. A 40 2835
|
[45] |
Xia H R, Ye C Y and Zhu S Y 1996 Phys. Rev. Lett. 77 1032
|
[46] |
Li L, Wang X, Yang J, Lazarov G, Qi J and Lyyra A M 2000 Phys. Rev. Lett. 84 4016
|
[47] |
Ficek Z and Swain S 2004 Phys. Rev. A 69 023401
|
[48] |
Wu J H, Li A J, Ding Y, Zhao Y C and Gao J Y 2005 Phys. Rev. A 72 023802
|
[49] |
Wang C L, Li A J, Zhou X Y, Kang Z H, Jiang Y and Gao J Y 2008 Opt. Lett. 33 687
|
[50] |
Tian S C, Wang C L, Tong C Z, Wang L J, Wang H H, Yang X B, Kang Z H and Gao J Y 2012 Opt. Express 20 23559
|
[51] |
Joshi A 2009 Phys. Rev. B 79 115315
|
[52] |
Osman K I, Hassan S S and Joshi A 2009 Eur. Phys. J. D 54 119
|
[53] |
Wang Z P, Yu B L, Xu F, Zhen S L, Wu X Q, Zhu J and Cao Z G 2012 Physica E 44 1267
|
[54] |
Fan S L, Shi Y P, Zhang H J and Sun H 2012 Chin. Phys. B 21 114203
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|