|
|
A density functional theory study on parameters fitting of ultra long armchair (n, n) single walled boron nitride nanotubes |
Wang Yan-Li(王艳丽)a)†, Zhang Jun-Ping(张军平)a), Su Ke-He(苏克和)a), Wang Xin(王欣)a), Liu Yan(刘艳)b), and Sun Xu(孙旭)a) |
a. Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education of China, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an 710072, China;
b. College of Chemistry and Life Science, Weinan Normal University, Weinan 714000, China |
|
|
Abstract Armchair (n, n) single walled boron nitride nanotubes with n=2-17 are studied by the density functional theory at the B3LYP/3-21G(d) level combined with the periodic boundary conditions for simulating the ultra long model. The results show that the structure parameters and the formation energies bear a strong relationship to n. The fitted analytical equations are developed with correlation coefficients larger than 0.999. The energy gaps of (2, 2) and (3, 3) tubes are indirect gaps, and the larger tubes (n=4-17) have direct energy gaps. Results show that the armchair boron nitride nanotubes (n=2-17) are insulators with wide energy gaps of between 5.93 eV and 6.23 eV.
|
Received: 11 October 2011
Revised: 29 November 2011
Accepted manuscript online:
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
81.07.De
|
(Nanotubes)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50572089) and the Basic Research Foundation of Northwestern Polytechnical University (Grant No. JC201269). |
Corresponding Authors:
Wang Yan-Li
E-mail: wangyanli@nwpu.edu.cn
|
Cite this article:
Wang Yan-Li(王艳丽), Zhang Jun-Ping(张军平), Su Ke-He(苏克和), Wang Xin(王欣), Liu Yan(刘艳), and Sun Xu(孙旭) A density functional theory study on parameters fitting of ultra long armchair (n, n) single walled boron nitride nanotubes 2012 Chin. Phys. B 21 060301
|
[1] |
Iijima S 1991 Nature 354 56
|
[2] |
Iijima S 1993 Mater. Sci. Eng. B 19 172
|
[3] |
Rubio A, Corkill J L and Cohen M L 1994 Phys. Rev. B 49 5081
|
[4] |
Blase X, Rubio A, Louie S G and Cohen M L 1994 Europhys. Lett. 28 335
|
[5] |
Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G and Zettle A 1995 Science 269 966
|
[6] |
Loiseau A, Willaime F, Demoncy N, Hug G and Pascard H 1996 Phys. Rev. Lett. 76 4737
|
[7] |
Pouch J J and Alterovitz A 1990 Synthesis and Properties of Boron Nitride (Z黵ich: Trans. Tech. Publications) p. 54
|
[8] |
Maryam M and Mahmoud M 2010 Physica E 42 2147
|
[9] |
Gorbunova M A, Shein I R, Makurin Y N, Ivanovskaya V V, Kijko V S and Ivanovskii A L 2008 Physica E 41 164
|
[10] |
Loiseau A, Willaime F, Demoncy N, Schramchenko N, Hug G, Colliex C and Pascard H 1998 Carbon 36 743
|
[11] |
Golberg D, Bando Y, Tang C C and Zhi C Y 2007 Adv. Mater. 19 2413
|
[12] |
Han W Q, Zett L A and Am J 2002 Chem. Soc. 125 2062
|
[13] |
Sueyavanshia A P, Yu M F, Wen J G, Tang C C and Yoshio B 2004 Appl. Phys. Lett. 84 2527
|
[14] |
Chopra N G and Zettle A 1998 Sol. St. Comm. 105 297
|
[15] |
Chen Y, Zou J, Campbell S J and Gerard L C 2004 Appl. Phys. Lett. 84 2430
|
[16] |
Wu J, Han W Q, Walukiewicz W, Ager J W, Shan W, Haller E E and Zettl A 2004 Nano Lett. 4 647
|
[17] |
Vaccarini L, Goze C, Henrard L, Hern醤dez E, Bernier P and Rubio A 2000 Carbon 38 1681
|
[18] |
Takeo O, Naruhiro K and Katsuaki S 2008 Diamond Relat. Mater. 17 1805
|
[19] |
Takeo O, Naruhiro K and Katsuaki S 2008 Phys. Chem. Solid 69 1228
|
[20] |
Moradian R and Azadi S 2006 Physica E 35 157
|
[21] |
Zhi C Y, Bando Y, Tang C C and Golberg D 2010 Mater. Sci. Eng. (R: Reports) 70 92.
|
[22] |
Villalpando-Paez F, Zamudio A, Elias A L, Son H, Barros E B, Chou S G, Kim Y A, Muramatsu H, Hayashi T, Kong J, Terrones H, Dresselhaus G, Endo M, Terrones M and Dresselhaus M S 2006 Chem. Phys. Lett. 424 345
|
[23] |
Chou Y M, Wang H W, Lin Y J, Chen W H and Wang B C 2009 Diamond Relat. Mater. 18 351
|
[24] |
Takeo O and Ichihito N 2002 Physica B: Conden. Matter 323 216
|
[25] |
Feibelman P J 1987 Phys. Rev. B 35 2626
|
[26] |
Jaffe J E and Hess A C 1996 Chem. Phys. 105 10983
|
[27] |
Dovesi R, Civalleri B, Orlando R, Roetti C, Saunders V R, Lipkowitz K B, Larter R and Cundari T R (eds.) 2005 Reviews in Computational Chemistry (New York: Wiley) 21 pp. 1-11
|
[29] |
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, PeterssonA P, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K G, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2009 Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT
|
[29] |
Wang Y L, Su K H, Wang X and Liu Y 2011 Acta Phys. Sin. 60 098111 (in Chinese)
|
[30] |
Truhlar D G, Isaacson A D and Garrett B C 1985 The Theory of Chemical Reaction Dynamics (Boca Raton: CRC Press) p. 65
|
[31] |
Blase X, Vita A D, Charlier J and Car R 1998 Phys. Rev. Lett. 80 1666
|
[32] |
Srivastava D, Menon M and Cho K 2001 Phys. Rev. B 63 195413
|
[33] |
Menon M and Srivastava D 1999 Chem. Phys. Lett. 307 407
|
[34] |
Zhao X, Liu Y, Inoue S, Suzuki T, Jones R O and Ando Y 2004 Phys. Rev. Lett. 92 125502
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|