Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 056301    DOI: 10.1088/1674-1056/21/5/056301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles investigation on the elastic stability and thermodynamic properties of Ti2SC

Yang Ze-Jin(杨则金)a)†, Guo Yun-Dong(郭云东)b), Linghu Rong-Feng(令狐荣锋)c), Cheng Xin-Lu(程新路)d), and Yang Xiang-Dong(杨向东)d)
a. School of Science, Zhejiang University of Technology, Hangzhou 310023, China;
b. School of Physics, Neijiang Normal University, Neijiang 641112, China;
c. School of Physics, Guizhou Normal College, Guiyang 550018, China;
d. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  Using Vanderbilt-type plane-wave ultrasoft pseudopotentials within the generalized gradient approximation (GGA) in the frame of density functional theory (DFT), we have investigated the crystal structures, elastic, and thermodynamic properties for Ti2SC under high temperature and high pressure. The calculated pressure dependence of the lattice volume is in excellent agreement with the experimental results. The calculated structural parameter of the Ti atom experienced a subtle increase with applied pressures and the increase suspended under higher pressures. The elastic constants calculations demonstrated that the crystal lattice is still stable up to 200 GPa. Investigations on the elastic properties show that the c axis is stiffer than the a axis, which is consistent with the larger longitudinal elastic constants (C33, C11) relative to transverse ones (C44, C12, C13). Study on Poisson's ratio confirmed that the higher ionic or weaker covalent contribution in intra-atomic bonding for Ti2SC should be assumed and the nature of ionic increased with pressure. The ratio (B/G) of bulk (B) and shear (G) moduli as well as B/C44 demonstrated the brittleness of Ti2SC at ambient conditions and the brittleness decreased with pressure. Moreover, the isothermal and adiabatic bulk moduli displayed opposite temperature dependence under different pressures. Again, we observed that the Debye temperature and Grüneisen parameter show weak temperature dependence relative to the thermal expansion coefficient, entropy, and heat capacity, from which the pressure effects are clearly seen.
Keywords:  first-principles      elasticity      thermodynamic properties      Ti2SC  
Received:  15 November 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  62.20.D- (Elasticity)  
  65.40.-b (Thermal properties of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974139, 10964002, 11104247, and 11176020), the Natural Science Foundation of Guizhou Province, China (Grant Nos. [2009]2066 and [2009]07), the Project of Aiding Elites' Research Condition of Guizhou Province, China (Grant No. TZJF-2008-42), and the Science Foundation from Education Ministry of Zhejiang Province, China (Grant No. Y201121807).

Cite this article: 

Yang Ze-Jin(杨则金), Guo Yun-Dong(郭云东), Linghu Rong-Feng(令狐荣锋), Cheng Xin-Lu(程新路), and Yang Xiang-Dong(杨向东) First-principles investigation on the elastic stability and thermodynamic properties of Ti2SC 2012 Chin. Phys. B 21 056301

[1] Barsoum M W 2000 Prog. Solid State Chem. 28 201
[2] Yoo H, Barsoum M W and Ei-Raghy T 2000 Nature 407 581
[3] Finkel P, Hettinger J D, Lofland S E, Barsoum M W and Ei-Raghy T 2001 Phys. Rev. B 65 035113
[4] Lofland S E, Hettinger J D, Meehan T, Bryan A, Finkel P, Gupta S, Barsoum M W and Hug G 2006 Phys. Rev. B 74 174501
[5] Barsoum M W, Radovic M, Zhen T, Finkel P and Kalidindi S R 2005 Phys. Rev. Lett. 94 085501
[6] Barsoum M W, Murugaiah A, Kalidindi S R and Zhen T 2004 Phys. Rev. Lett. 92 255508
[7] Ivanovskii A L 1996 Uspekhi Khimii 65 499
[8] Sun Z M, Ahuja R and Schneider J M 2003 Phys. Rev. B 68 224112
[9] Barsoum M W and Ei-Raghy T 1996 J. Am. Ceram. Soc. 79 1953
[10] Barsoum M W, Brodkin D and Ei-Raghy T 1997 Scr. Metall. Mater. 36 535
[11] Li J F, Pan W, Sato F and Watanabe R 2001 Acta Mater. 49 937
[12] Amini S, Barsoum M W and Ei-Raghy T 2007 J. Am. Ceram. Soc. 90 3953
[13] Medvedeva N I and Freeman A J 2008 Scripta Mater. 58 671
[14] Toth L E, Jeitschko W and Yen M 1967 J. Less Common Met. 10 129
[15] Sakamaki K, Wada H, Nozaki H Y, Onuki Y and Kawai M 1999 Solid State Commun. 112 323
[16] Bortolozo A D, Sant'anna O H, Luz M S D, Santos C A M D, Pereira A S, Trentin K S and Machado A J S 2006 Solid State Commun. 139 57
[17] Bortolozo A D, Sant'anna O H, Santos C A M D and Machado A J S 2007 Solid State Commun. 144 419
[18] Gao G Y, Oganov A R, Li P F, Li Z W, Wang H, Cui T, Ma Y M, Bergara A, Lyakhov A O, Litaka T and Zou G T 2010 Proc. Natl. Acad. Sci. USA 107 1317
[19] Lv J, Wang Y C, Zhu L and Ma Y M 2011 Phys. Rev. Lett. 106 015503
[20] Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature 458 182
[21] Li Q, Ma Y M, Oganov A R, Wang H B, Wang H, Xu Y, Cui T, Mao H K and Zou G T 2009 Phys. Rev. Lett. 102 175506
[22] Gupta S, Amini S, Filimonov D, Palanisamy T, Ei-Raghy T and Barsoum M W 2007 J. Am. Ceram. Soc. 90 3566
[23] Du Y L, Sun Z M, Hashimoto H and Tian W B 2008 Solid State Commun. 145 461
[24] Sun Z M, Li S, Ahuja R and Schneider J M 2004 Solid State Commun. 129 589
[25] Hug G 2006 Phys. Rev. B 74 184113
[26] Du Y L, Sun Z M, Hashimoto H and Tian W B 2008 Phys. Lett. A 372 5220
[27] Cui S X, Feng W X, Hu H Q, Feng Z B and Liu H 2009 Scripta Mater. 61 576
[28] Scabarozi T H, Amini S, Finkel P, Leaffer O D, Spanier J E, Barsoum M W, Drulis M, Drulis H, Tambussi W M, Hettinger J D and Lofland S E 2008 J. Appl. Phys. 104 033502
[29] Kulkarni S R, Vennila R S, Phatak N A, Saxena S K, Zhab C S, El-Raghy T, Barsoumd M W, Luoe W and Ahuja R 2008 J. Alloys Comp. 448 L1
[30] Chen Y H, Du R, Zhang Z L, Wang W C, Zhang C R, Kang L and Luo Y C 2011 Acta Phys. Sin. 60 086801 (in Chinese)
[31] Cheng Z M, Wang X Q, Wang F, Lu L Y, Liu G B, Duan Z F and Nie Z X 2011 Acta Phys. Sin. 60 096301 (in Chinese)
[32] Fan K M, Yang L, Peng S M, Long X G, Wu Z C and Zu X T 2011 Acta Phys. Sin. 60 076201 (in Chinese)
[33] Hu Y P, Ping K B, Yan Z J, Yang W and Gong C W 2011 Acta Phys. Sin. 60 107504 (in Chinese)
[34] Liu C H, Ouyang C Y and Ji Y H 2011 Acta Phys. Sin. 60 077103 (in Chinese)
[35] Liu F L, Jiang G, Bai L N and Kong F J 2011 Acta Phys. Sin. 60 567 (in Chinese)
[36] Liu J J 2011 Acta Phys. Sin. 60 555 (in Chinese)
[37] Ru Q, Hu S J and Zhao L Z 2011 Acta Phys. Sin. 60 448 (in Chinese)
[38] Wang F, Wang X Q, Nie Z X, Cheng Z M and Liu G B 2011 Acta Phys. Sin. 60 480 (in Chinese)
[39] Wang X Z, Lin L B, He J and Chen J 2011 Acta Phys. Sin. 60 077104 (in Chinese)
[40] Wen L W, Wang Y M, Pei H X and Jun D 2011 Acta Phys. Sin. 60 599 (in Chinese)
[41] Yuan D, Luo H F, Huang D H and Wang F H 2011 Acta Phys. Sin. 60 077101 (in Chinese)
[42] Zhang H, Zhang G Y, Xiao M Z, Lu G X, Zhu S L and Zhang K 2011 Acta Phys. Sin. 60 593 (in Chinese)
[43] Zhang Y J, Yan J L, Zhao G and Xie W F 2011 Acta Phys. Sin. 60 560 (in Chinese)
[44] Li Y W and Ma Y M 2010 SCIENTIA SINICA Phys, Mech & Astron 40 146 (in Chinese)
[45] Li Q and Ma Y M 2011 Prog. Chem. 23 829
[46] Hao A M, Zhou T J, Zhu Y, Zhang X Y and Liu R P 2011 Chin. Phys. B 20 047103
[47] Li X F, Zhai H C, Fu H Z, Liu Z L and Ji G F 2011 Chin. Phys. B 20 093101
[48] Liu C M, Ge N N, Fu Z J, Cheng Y and Zhu J 2011 Chin. Phys. B 20 045101
[49] Xu Y J Z, Shang J X and H.Wang F 2011 Chin. Phys. B 20 037101
[50] Zhang L, Ji G F, Zhao F and Gong Z Z 2011 Chin. Phys. B 20 047102
[51] Vanderbilt D 1990 Phys. Rev. B 41 7892
[52] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[53] Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413
[54] Payne M C, Teter M P, Allen D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[55] Milman V, Winkler B, White A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum. Chem. 77 895
[56] Bouhemadou A 2009 Appl. Phys. A 96 959
[57] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[58] Born M 1940 Proc. Cambridge Philos. Soc. 36 160
[59] Islam A K M A, Sikder A S and Islam F N 2006 Phys. Lett. A 350 288
[60] Auld M A 1973 Acoustic Fields and Waves in Solids (New York:Wiley)
[61] Neumann G S, Stixtude L and Cohen R E 1999 Phys. Rev. B 60 791
[62] Haines J, Leger J M and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1
[63] Bouhemadou A and Khenata R 2008 Phys. Lett. A 372 6448
[64] Pugh S F 1954 Philos. Mag. 45 833
[65] Holm B, Ahuja R and Johannson B 2001 Appl. Phys. Lett. 79 1450
[66] Blanco M A, Francisco E and Luana V 2004 Comp. Phys. Comm. 158 57
[67] Drulis M K, Drulis H, Hackemer A E, Leaffer O, Spanier J, Amini S, Barsoum M W, Guilbert T and Raghy T E 2008 J. Appl. Phys. 104 023526
[68] Barsoum M W, Physical Properties of the MAX Phases, Encyclopedia of Materials:Science and Technology (Elsevier, Amsterdam, 2006).
[69] Scabarozi T H, Amini S, Leaffer O, Ganguly A, Gupta S, Tambussi W, Clipper S, Spanier J E, Barsoum M W, Hettinger J D and Lofland S E 2009 J. Appl. Phys. 105 013543
[70] Holm B, Ahuja R, Li S and Johansson B 2002 J. Appl. Phys. 91 9874
[71] Du Y L, Sun Z M and Hashimoto H 2010 Physica B 405 720
[72] Cover M F, Warschkow O, Bilek M M M and Mckenzie D R 2009 J. Phys.:Condens. Matter 21 305403
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!