Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 054209    DOI: 10.1088/1674-1056/21/5/054209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamic control of retrieval contrast in a $\Lambda$-type atomic system

Zhang Xiao-Hang(张晓航)a), Bao Qian-Qian(鲍倩倩) a), Zhang Yan(张岩)a), Su Ming-Che(苏铭彻)b), Cui Cui-Li(崔淬砺) a)†, and Wu Jin-Hui(吴金辉)a)
a. College of Physics, Jilin University, Changchun 130012, China;
b. College of Computer Science and Technology, Jilin University, Changchun 130012, China
Abstract  We propose an efficient scheme for optimizing the optical memory of a sequence of signal light pulses in a system of ultracold atoms in $\Lambda$ configuration. The memory procedure consists of write-in, storage, and retrieval phases. By applying a weak microwave field in the storage stage, additional phase-dependent terms are included, and the contrast of the output signal pulses can be dynamically controlled (enhanced or suppressed) through manipulating the relative phase φ between optical and microwave fields. Our numerical analysis shows that the contrast is enhanced to the most extent when φ=1.5π. In addition, the contrast is in proportion to the Rabi frequency of the microwave field with a certain relative phase.
Keywords:  electromagnetically induced transparency      optical memory      relative phase  
Received:  28 October 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104112), the National Foundation for Fostering Talents of Basic Science, China (Grant No. J1103202), the China Postdoctoral Science Foundation (Grant No. 20110491316), the National Undergraduate Innovation Foundation of China (Grant No. 2011A32045), and the Basic Scientific Research Foundation of Jilin University, China.

Cite this article: 

Zhang Xiao-Hang(张晓航), Bao Qian-Qian(鲍倩倩), Zhang Yan(张岩), Su Ming-Che(苏铭彻), Cui Cui-Li(崔淬砺), and Wu Jin-Hui(吴金辉) Dynamic control of retrieval contrast in a $\Lambda$-type atomic system 2012 Chin. Phys. B 21 054209

[1] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[2] Harris S E, Field J E and Imamoglu A 1990 Phys. Rev. Lett. 64 1107
[3] Harris S E and Hau L V 1999 Phys. Rev. Lett. 82 4611
[4] Zhang Y, Xue Y, Wang G, Cui C L, Wang R and Wu J H 2011 Opt. Express 19 2111
[5] She Y C, Zhang W X and Wang L D 2011 Acta Phys. Sin. 60 064205 (in Chinese)
[6] Lukin M D and Imamoglu A 2000 Phys. Rev. Lett. 84 1419
[7] Brown A W and Xiao M 2005 Opt. Lett. 30 699
[8] She Y C, Deng L and Ding J W 2009 Acta Phys. Sin. 58 3198 (in Chinese)
[9] Shi Z, Boyd R W, Gauthier D J and Dudley C C 2007 Opt. Lett. 32 915
[10] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[11] Lü C H, Tan L and Tan W T 2011 Acta Phys. Sin. 60 024204 (in Chinese)
[12] Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Phys. Rev. Lett. 86 783
[13] Wang H H, Wei X G, Wang L, Li Y J, Du D M, Wu J H, Kang Z H, Jiang Y and Gao J Y 2007 Opt. Express 15 16044
[14] Choi K S, Deng H, Laurat J and Kimble H J 2007 Nature 452 67
[15] Bao Q Q, Gao J W, Cui C L, Wang G, Xue Y and Wu J H 2011 Opt. Express 19 11832
[16] Chaneli閞e T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B and Kuzmich A 2005 Nature 438 833
[17] Eisaman M D, Andr? A, Massou F, Fleischhauer M, Zibrov A S and Lukin M D 2005 Nature 438 837
[18] Eilam A, Wilson-Gordon A D and Friedmann H 2009 Opt. Lett. 34 1834
[19] Shahriar M S and Hemmer P R 1997 Phys. Rev. Lett. 65 1865
[20] Li H, Sautenkov V A, Rostovtsev Y V, Welch G, Hemmer P R and Scully M O 2009 Phys. Rev. A 80 023820
[21] Agarwal G S, Dey T N and Menon S 2001 Phys. Rev. A 64 053809
[22] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press)
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[7] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[8] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[9] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[10] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[11] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[12] Relative phase-dependent two-electron emission dynamics with two-color circularly polarized laser fields
Tong-Tong Xu(徐彤彤), Lian-Lian Zhang(张莲莲), Zhao Jin(金钊), Wei-Jiang Gong(公卫江). Chin. Phys. B, 2020, 29(9): 093202.
[13] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[14] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
[15] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
No Suggested Reading articles found!