Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 053403    DOI: 10.1088/1674-1056/21/5/053403
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Coupled-channel optical calculation for positron–lithium scattering

Liu Fang(刘芳), Cheng Yong-Jun(程勇军), and Zhou Ya-Jun(周雅君)
Natural Science Research Center, Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080, China
Abstract  Positron scattering with atomic lithium is investigated by using a coupled-channel optical method. The ionization continuum and positronium formation channels are taken into account via a complex equivalent-local optical potential. The positronium formation cross sections and the ionization cross sections, as well as the total scattering cross sections, are reported at energies above 3 eV and compared with available experimental and theoretical data.
Keywords:  positron      lithium      positronium      ionization  
Received:  16 January 2012      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  34.80.Uv (Positron scattering)  
Fund: Project supported by National Natural Science Foundation of China (Grant No. 10674055).

Cite this article: 

Liu Fang(刘芳), Cheng Yong-Jun(程勇军), and Zhou Ya-Jun(周雅君) Coupled-channel optical calculation for positron–lithium scattering 2012 Chin. Phys. B 21 053403

[1] Sarkar K P, Basu M and Ghosh A S 1988 J. Phys. B:At. Mol. Opt. Phys. 21 1649
[2] Ward S J, Horbatsch M, McEachran R P and Stauffer A D 1989 J. Phys. B:At. Mol. Opt. Phys. 22 1845
[3] Basu M and Ghosh A S 1991 Phys. Rev. A 43 4746
[4] Hewitt R N, Noble C J and Bransden B H 1992 J. Phys. B:At. Mol. Opt. Phys. 25 2683
[5] Gianturco F A and Melissa R 1996 Phys. Rev. A 54 357
[6] Bhattacharyya S and Talukdar B 1998 Phys. Rev. A 58 736
[7] Acacia P, Horbatsch M, McEachran R P and Stauffer A D 1997 J. Phys. B:At. Mol. Opt. Phys. 30 2287
[8] Kernoghan A A, McAlinden M T and Walters H R J 1994 J. Phys. B:At. Mol. Opt. Phys. 27 L625
[9] McAlinden M T, Kernoghan A A and Walters H R J 1997 J. Phys. B:At. Mol. Opt. Phys. 30 1543
[10] Campbell C P, McAlinden M T, Kernoghan A A and Walters H R J 1998 Nucl. Instrum. Methods Phys. Res. B 143 41
[11] Ward S J and Shertzer J 2003 Phys. Rev. A 68 032720
[12] Ward S J and Shertzer J 2004 Nucl. Instrum. Methods Phys. Res. B 221 206
[13] Ward S J and Shertzer J 2005 Nucl. Instrum. Methods Phys. Res. B 241 257
[14] Le A T, Bromley M W J and Lin C D 2005 Phys. Rev. A 71 032713
[15] Ratnavelu K, Kamali M Z M and Ng S Y 2002 Nucl. Instrum. Methods Phys. Res. B 192 185
[16] Ratnavelu K and Ng S Y 2006 Chin. Phys. Lett. 23 1753
[17] Lugovskoy A V, Kadyrov A S, Bray I and Stelbovics A T 2010 Phys. Rev. A 82 062708
[18] Surdutovich E, Johnson J M, Kauppila W E, Kwan C K and Stein T S 2002 Phys. Rev. A 65 032713
[19] Zhou Y, Ratnavelu K and McCarthy I E 2005 Phys. Rev. A 71 042703
[20] Cheng Y and Zhou Y 2007 Phys. Rev. A 76 012704
[21] Ryzhikh G and Mitroy J 1997 J. Phys. B:At. Mol. Opt. Phys. 30 5545
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[3] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[4] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[5] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[6] Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(7): 078101.
[7] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[8] Experimental study on gas production and solution composition during the interaction of femtosecond laser pulse and liquid
Yichun Wang(王奕淳), Han Wu(吴寒), Wenkang Lu(陆文康), Meng Li(李萌), Ling Tao(陶凌), and Xiuquan Ma(马修泉). Chin. Phys. B, 2022, 31(7): 070204.
[9] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[10] Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞). Chin. Phys. B, 2022, 31(6): 063203.
[11] Nd L-shell x-ray emission induced by light ions
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红),Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Yu Liu(柳钰), Yan-Ning Zhang(张艳宁), Chang-Hui Liang(梁昌慧), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2022, 31(6): 063204.
[12] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[13] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Strong-field response time and its implications on attosecond measurement
Chao Chen(陈超), Jiayin Che(车佳殷), Xuejiao Xie(谢雪娇), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军). Chin. Phys. B, 2022, 31(3): 033201.
No Suggested Reading articles found!