Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 053402    DOI: 10.1088/1674-1056/21/5/053402
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Resonance phenomena and threshold features in positron–helium scattering

Yu Rong-Mei(于荣梅), Cheng Yong-Jun(程勇军), Wang Yang(王旸), and Zhou Ya-Jun(周雅君)
The Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150081, China
Abstract  Investigations of resonances and threshold behaviors in positron--helium scattering have been made using the momentum-space coupled-channels optical method. The positronium formation channels are considered via an equivalent-local complex potential. The s-wave resonances and the Wigner cusp feature at the positronium (n=1) formation threshold are compared with the previous reports. The p-and the d-wave resonances and a Wigner cusp feature at the positronium (n=2) formation threshold are reported for the first time.
Keywords:  positron      helium      resonance  
Received:  09 January 2012      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  34.80.Uv (Positron scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10674055)

Cite this article: 

Yu Rong-Mei(于荣梅), Cheng Yong-Jun(程勇军), Wang Yang(王旸), and Zhou Ya-Jun(周雅君) Resonance phenomena and threshold features in positron–helium scattering 2012 Chin. Phys. B 21 053402

[1] Xu H X, Hao Y P, Han R D, Weng H M, Du H J and Ye B J 2011 Acta Phys. Sin. 60 067803 (in Chinese)
[2] Qi N, Wang Y W, Wang D, Wang D D and Chen Z Q 2011 Acta Phys. Sin. 60 107805 (in Chinese)
[3] Seiler G J, Oberoi R S and Callaway J 1971 Phys. Rev. A 3 2006
[4] Doolen G D, Nuttall J and Wherry C J 1978 Phys. Rev. Lett. 40 313
[5] Mitroy J and Ratnavelu K 1995 J. Phys. B:At. Mol. Opt. Phys. 28 287
[6] Gien T T 1996 J. Phys. B:At. Mol. Opt. Phys. 29 2127
[7] Yan Z C and Ho Y K 2008 Phys. Rev. A 77 030701
[8] Ho Y K and Yan Z C 2004 Phys. Rev. A 70 032716
[9] Ward S J, Horbatsch M, McEachran R P and Stauffer A D 1989 J. Phys. B:At. Mol. Opt. Phys. 22 3763
[10] McAlinden M T, Kernoghan A A and Walters H R J 1997 J. Phys. B:At. Mol. Opt. Phys. 30 1543
[11] Roy U and Ho Y K 2002 J. Phys. B:At. Mol. Opt. Phys. 35 2149
[12] Roy U and Ho Y K 2004 Nucl. Instr. Meth. B 221 36
[13] Han H, Zhong Z, Zhang X and Shi T 2008 Phys. Rev. A 78 044701
[14] Liu F, Cheng Y, Zhou Y and Jiao L 2011 Phys. Rev. A 83 032718
[15] Kar S and Ho Y K 2005 Eur. Phys. J. D 35 453
[16] Han H, Zhong Z, Zhang X and Shi T 2008 Phys. Rev. A 77 012721
[17] Ahikari S K and Ghosh A S 1996 Chem. Phys. Lett. 262 460
[18] Kar S and Ho Y K 2004 J. Phys.B:At. Mol. Opt. Phys. 37 3177
[19] Utamuratov R, Kadyrov A S, Fursa D V and Bray I 2010 J. Phys. B:At. Mol. Opt. Phys. 43 031001
[20] Utamuratov R, Kadyrov A S, Fursa D V and Bray I 2010 J. Phys. B: At. Mol. Opt. Phys. 43 125203
[21] Ren Z, Han H and Shi T 2011 J. Phys. B:At. Mol. Opt. Phys. 44 065204
[22] Zhou Y, Ratnavelu K and McCarthy I E 2005 Phys. Rev. A 71 042703
[23] Cheng Y J and Zhou Y J 2007 Phys. Rev. A 76 012704
[24] Cheng Y J and Zhou Y J 2010 Chin. Phys. B 19 063405
[25] Cheng Y J, Zhou Y J and Jiao L G 2012 Chin. Phys. B 21 013405
[26] Yu R M, Cheng Y J, Jiao L G and Zhou Y J 2012 Chin. Phys. B 21 013404
[27] Van Reeth P and Humberston J W 1999 J. Phys. B:At. Mol. Opt. Phys. 32 L103
[28] Van Reeth P and Humberston J W 2000 Nucl. Instr. Meth. B 171 106
[29] Jones A C L, Caradonna P, Makochekanwa C, Slaughter D S, McEachran R P, Machacek J R, Sullivan J P and Buckman S J 2010 Phys. Rev. Lett. 105 073201
[30] McCarthy I E and Stelbovics A T 1983 Phys. Rev. A 28 2693
[31] McCarthy I E and Zhou Y 1994 Phys. Rev. A 49 6
[32] Burke P G, Cooper J W and Ormonde S 1969 Phys. Rev. 183 245
[33] Golden D E and Zecca A 1970 Phys. Rev. A 1 241
[34] Kuyatt C E, Simpson J A and Mielczarek S R 1965 Phys. Rev. 138 A385
[35] Burke P G, Cooper J W and Ormonde S 1969 Phys. Rev. 183 345
[36] Ryzhikh G and Mitroy J 1998 J. Phys. B:At. Mol. Opt. Phys. 31 3465
[37] Newton R G 1959 Phys. Rev. 114 1611
[38] Meyerhof W E 1963 Phys. Rev. 129 692
[39] Coleman P G, Cheesman N and Lowry E R 2009 Phys. Rev. Lett. 102 173201
[40] Wigner E P 1948 Phys. Rev. 73 1002
[41] Baz A I 1957 Zh. Eksp. Teor. Fiz. 33 923
[42] Sanche L and Schulz G J 1972 Phys. Rev. A 5 1672
[43] Oberoi R S and Nesbet R K 1973 Phys. Rev. A 8 2969
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[3] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[4] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[5] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[6] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[7] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[8] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[9] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[10] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[11] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[12] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[13] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[14] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[15] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
No Suggested Reading articles found!