Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 037803    DOI: 10.1088/1674-1056/21/3/037803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Nanoscaled ZnO films used as enhanced substrates for fluorescence detection of dyes

Liu Yan-Song(刘艳松)a)†, Yi Fub), Ramachandram Badugub), Joseph R. Lakowiczb), and Xu Xiao-Liang(许小亮)a)
a. Department of Physics, University of Science and Technology of China, Hefei 230026, China;
b. Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, Maryland 21021, USA
Abstract  The ability of nanoscaled ZnO films to enhance fluorescence was studied. We found that the fluorescence intensities of Cy5, rhodamine 6G, and fluorescein can be enhanced about 10-fold on nanoscaled ZnO films as compared to that on glass substrates. The lifetimes of all samples were measured, and no obvious change in lifetime was observed for dyes on different substrates. The mechanism for the nanoscaled ZnO film enhanced fluorescence appears to be different from that for the metal-fluorophore systems.
Keywords:  nanoscaled ZnO films      lifetime      enhanced fluorescence      dye  
Received:  07 October 2011      Revised:  10 November 2011      Accepted manuscript online: 
PACS:  78.47.jd (Time resolved luminescence)  
  78.66.Hf (II-VI semiconductors)  
  78.90.+t (Other topics in optical properties, condensed matter spectroscopy and other interactions of particles and radiation with condensed matter)  
Fund: Project supported by the National Institutes of Health of USA (Grant Nos. HG002655, HG005090, and EB006521) and the National Natural Science Foundation of China (Grant No. 50872129).
Corresponding Authors:  Liu Yan-Song,lysong@mail.ustc.edu.cn     E-mail:  lysong@mail.ustc.edu.cn

Cite this article: 

Liu Yan-Song(刘艳松), Yi Fu, Ramachandram Badugu, Joseph R. Lakowicz, and Xu Xiao-Liang(许小亮) Nanoscaled ZnO films used as enhanced substrates for fluorescence detection of dyes 2012 Chin. Phys. B 21 037803

[1] Geddes C D and Lakowicz J R 2002 J. Fluoresc. 12 121
[2] Lakowicz J R 2005 Anal. Biochem. 337 171
[3] Ray K, Chowdhury M H and Lakowicz J R 2007 Anal. Chem. 79 6480
[4] Fu Y, Zhang J and Lakowicz J R 2008 Langmuir 24 3429
[5] Chowdhury M H, Ray K, Gray S K, Pond J and Lakowicz J R 2009 Anal. Chem. 81 1397
[6] Ray K, Szmacinski H and Lakowicz J R 2009 Anal. Chem. 81 6049
[7] Szmacinski H, Ray K and Lakowicz J R 2009 J. Biophoton. 2 243
[8] Liu L, Xu X L, Lei J M, Liu Y S and Yang Z 2011 Thin Solid Films 519 5582
[9] Liu Y S, Lu H F, Xu X L, Gong M G, Liu L and Zhou Yang 2011 Chin. Phys. Lett. 28 057803
[10] Özg黵 ?, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dovgan S, Avrutin V, Cho S J and Morkocc H 2005 J. Appl. Phys. 98 041301
[11] Jian C Y, Sun X W, Lo G Q, Kwong D L and Wang J X 2007 Appl. Phys. Lett. 90 263501
[12] Zheng Y, Chen C, Lin X, Zheng Q, Wei K, Zhu J and Zhu Y 2007 Inorg. Chem. 46 6675
[13] Gong M G, Xu X L, Yang Z, Liu Y S and Liu L 2010 Chin. Phys. B 19 056701
[14] Ma K, Li H, Zhang H, Xu X L, Gong M G and Yang Z 2009 Chin. Phys. B 18 1942
[15] Gong M G, Xu X L, Cao Z L, Liu Y Y and Zhu H M 2009 Acta Phys. Sin. 58 1885 (in Chinese)
[16] Yang Z, Xu X L, Gong M G, Liu L and Liu Y S 2010 Chin. Phys. B 19 126103
[17] Nie L, Gao L Z, Feng P, Zhang J, Fu X, Liu Y, Yan X and Wang T 2006 Small 2 621
[18] Dorfman A, Kumar N and Hahm J I 2006 Adv. Mater. 18 2685
[19] Dorfman A, Kumar N and Hahm J I 2006 Langmuir 22 4890.
[20] Zhao J W, Wu L Z and Zhi J F 2008 J. Mater. Chem. 18 2459
[21] Adalsteinsson V, Parajuli O, Kepics S, Gupta A, Reeves W B and Hahm J I 2008 Anal. Chem. 80 6594
[22] Kumar N, Dorfman A and Hahm J 2006 Nanotechnology 17 2875
[23] Hu W H, Liu Y S, Zhu Z H, Yang H B and Li C M 2010 Appl. Mat. Interfaces 2 1569
[24] Hu W H, Liu Y S, Yang H B, Zhou X Q and Li C M 2011 Biosens. Bioelectron 26 3683
[25] Chatterjee A P, Motra P and Mukhopadhyay A K 1999 J. Mater. Sci. 34 4225
[26] Ohyama M, Kozuka H and Yoko T 1997 Thin Solid Films 306 78
[27] Zhang J, Badugu R and Lakowicz J R 2008 Plasmonics 3 3
[28] Zhang J H, Thurber A, Tenne D A, Rasmussen J W, Wingett D, Hanna C and Punoose A 2010 Adv. Funct. Mater. 20 4358
[29] Sirbuly D J, Law M, Pauzauskie P, Yan H, Maslov A V, Knutsen K, Ning C Z, Saykally R J and Yang P 2005 Proc. Natl. Acad. Sci. USA 102 7800
[1] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[2] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[3] Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule
Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰). Chin. Phys. B, 2022, 31(8): 083101.
[4] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[5] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[6] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[7] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[8] Vibronic spectra of aluminium monochloride relevant to circumstellar molecule
Jian-Gang Xu(徐建刚), Cong-Ying Zhang(张聪颖), Yun-Guang Zhang(张云光). Chin. Phys. B, 2020, 29(3): 033102.
[9] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[10] Spectral attenuation of a 400-nm laser pulse propagating through a plasma filament induced by an intense femtosecond laser pulse
Quan-Jun Wang(王全军), Rao Chen(陈娆), Jia-Chen Zhao(赵家琛), Chun-Lin Sun(孙春霖), Xiao-Zhen Wang(王小珍), Jing-Jie Ding(丁晶洁), Zuo-Ye Liu(刘作业), Bi-Tao Hu(胡碧涛). Chin. Phys. B, 2020, 29(1): 013301.
[11] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[12] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[13] Methodical review of the literature referred to the dye-sensitized solar cells: Bibliometrics analysis and road mapping
Karwan Wasman Qadir, Qayyum Zafar, Nader Ale Ebrahim, Zubair Ahmad, Khaulah Sulaiman, Rizwan Akram, Mohammad Khaja Nazeeruddin. Chin. Phys. B, 2019, 28(11): 118401.
[14] Electron transport properties of TiO2 shell on Al2O3 core in dye-sensitized solar cells
Dongmei Xie(解东梅), Xiaowen Tang(唐小文), Yuan Lin(林原), Pin Ma(马品), Xiaowen Zhou(周晓文). Chin. Phys. B, 2018, 27(1): 017804.
[15] Effect of hydroxyl on dye-sensitized solar cells assembled with TiO2 nanorods
Lijian Meng(孟立建), Tao Yang(杨涛), Sining Yun(云斯宁), Can Li(李灿). Chin. Phys. B, 2018, 27(1): 016802.
No Suggested Reading articles found!