Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 037802    DOI: 10.1088/1674-1056/21/3/037802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

An effective reflectance method for designing broadband antireflection films coupled with solar cells

Zhan Feng(詹锋)a) b), He Ji-Fang(贺继方) b), Shang Xiang-Jun(尚向军)b), Li Mi-Feng(李密锋)b), Ni Hai-Qiao(倪海桥)b), Xu Ying-Qiang(徐应强) b), and Niu Zhi-Chuan(牛智川)b)†
a. The Key Laboratory of Nonferrous Metal Materials and New Processing Technology of Ministry of Education, Guangxi University, Nanning 530004, China;
b. State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The solar spectrum covers a broad wavelength range, which requires that antireflection coating (ARC) is effective over a relatively wide wavelength range for more incident light coming into the cell. In this paper, we present two methods to measure the composite reflection of SiO2/ZnS double-layer ARC in the wavelength ranges of 300-870 nm (dual-junction) and 300-1850 nm (triple-junction), under the solar spectrum AM0. In order to give sufficient consideration to the ARC coupled with the window layer and the dispersion effect of the refractive index of each layer, we use multi-dimensional matrix data for reliable simulation. A comparison between the results obtained from the weighted-average reflectance (WAR) method commonly used and that from the effective-average reflectance (EAR) method introduced here shows that the optimized ARC through minimizing the effective-average reflectance is convenient and available.
Keywords:  weighted-average reflectance      effective-average reflectance      transfer matrix  
Received:  30 March 2011      Revised:  09 October 2011      Accepted manuscript online: 
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176012 and 90921015), the National Basic Research Program of China (Grant Nos. 2010CB327601 and 2012CB932701), and the National Science Foundation for Post-doctoral Scientists of China (Grant No. 20080440507).
Corresponding Authors:  Niu Zhi-Chuan,zcniu@semi.ac.cn     E-mail:  zcniu@semi.ac.cn

Cite this article: 

Zhan Feng(詹锋), He Ji-Fang(贺继方), Shang Xiang-Jun(尚向军), Li Mi-Feng(李密锋), Ni Hai-Qiao(倪海桥), Xu Ying-Qiang(徐应强), and Niu Zhi-Chuan(牛智川) An effective reflectance method for designing broadband antireflection films coupled with solar cells 2012 Chin. Phys. B 21 037802

[1] Sun C H, Jiang P and Jiang B 2008 Appl. Phys. Lett. 92 061112
[2] Zhu Y Y, Fang Z B and Liu Y S 2010 Chin. Phys. B 19 097807
[3] Tao M, Zhou W, Yang H and Chen L 2007 Appl. Phys. Lett. 91 081118
[4] Huang Y F, Chattopadhyay S, Jen Y, Peng C, Liu T, Hsu Y, Pan C, Lo H, Hsu C, Chang Y, Lee C, Chen K and Chen L 2007 Nature Nanotechnol. 2 770
[5] Shang X J, He J F, Li M F, Zhan F, Ni H Q, Niu Z C, Pettersson H and Fu Y 2011 Appl. Phys. Lett. 99 113514
[6] Wang Y H, Tummala R, Chen L, Guo L Q, Zhou W D and Tao M 2009 J. Appl. Phys. 105 103501
[7] Zhang Q X, Wei W S and Ruan F P 2011 Chin. Phys. B 20 047802
[8] Green M A 1982 Solar Cells (New Jersey: Prentice-Hall Inc. Press)
[9] Richards B S 2003 Sol. Energy. Mater. Sol. C. 79 369
[10] Sttehlke S, Bastide S, Guillet J and Levy-Clement C 2000 Mat. Sci. Eng. B 69 81
[11] Algora C and Alcaraz M F 1990 IEEE Trans. Electron Devices 44 1499
[12] Zhan F, Wang H L, He J F, Wang J, Huang S S, Ni H Q and Niu Z C 2011 Chin. Phys. Lett. 28 047802
[13] Levinshtein M, Rumyantsev S and Shur M 1996 Handbook Series on Semiconductor Parameters (London: World Scientific Press) p. 54
[14] Palik E D 1985 Handbook of Optical Constant of Solids (London: Academic Press) p. 602
[15] Palik E D 1997 Handbook of Optical Constant of Solids (London: Academic Press) p. 597
[16] Weinstein W 1954 Vacuum 4 3
[17] Berning P H 1963 Physics of Thin Films (New York: Academic Press) p. 69
[18] Zhao J and Green M A 1991 IEEE Trans. Electron Devices 38 1925
[19] Chopra K L and Das S R 1983 Thin Film Solar Cell (New York: Plenum Press) p. 507
[20] Hou H Q, Sharps P R, Fatemi N S, Li N, Stan M A, Martin P A, Hammons B E and Spadafora F 2000 textit Proceedings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, AK, USA, September 15-22, 2000 p. 1173
[21] Stan M A, Aiken D, Sharps P R, Hills J, Clevenger B and Fatemi N S 2003 textit Proceedings of the 3rd world Photovoltaic Energy Conversion Conference, Osaka, Japan, May 18-18, 2003 p662
[22] Stan M A, Sharps P R, Fatemi N S, Spadafora F, Aiken D and Hou H Q 2000 textit Proceedings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, AK, USA, September 15-22, 2000 p. 1374
[23] Yuan H R 2000 Acta Energiae Solaris Sinica 21 371 (in Chinese)
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Junpeng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(7): 077101.
[3] Edge states enhanced by long-range hopping: An analytical study
Huiping Wang(王会平), Li Ren(任莉), Liguo Qin(秦立国), and Yueyin Qiu(邱岳寅). Chin. Phys. B, 2021, 30(10): 107301.
[4] Impact vibration properties of locally resonant fluid-conveying pipes
Bing Hu(胡兵), Fu-Lei Zhu(朱付磊), Dian-Long Yu(郁殿龙), Jiang-Wei Liu(刘江伟), Zhen-Fang Zhang(张振方), Jie Zhong(钟杰), and Ji-Hong Wen(温激鸿). Chin. Phys. B, 2020, 29(12): 124301.
[5] Two-color light-emitting diodes with polarization-sensitive high extraction efficiency based on graphene
H Sattarian, S Shojaei, E Darabi. Chin. Phys. B, 2016, 25(5): 058504.
[6] Surface states in crystals with low-index surfaces
Wang Hui-Ping (王会平), Tao Rui-Bao (陶瑞宝). Chin. Phys. B, 2015, 24(11): 117301.
[7] Rectification effect in asymmetric Kerr nonlinear medium
Liu Wan-Guo (刘晚果), Pan Feng-Ming (潘风明), Cai Li-Wei (蔡力伟). Chin. Phys. B, 2014, 23(6): 064213.
[8] Optical properties of the electromagnetic waves propagating in an elliptical cylinder multilayer structure
A. Abdoli-Arani. Chin. Phys. B, 2014, 23(3): 034211.
[9] Analytical study of surface states caused by the edge decoration
Zhao Yuan-Yuan(赵媛媛), Li Wei(李炜), and Tao Rui-Bao(陶瑞宝) . Chin. Phys. B, 2012, 21(2): 027302.
[10] The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method
He Ying (何英), Tao Qiu-Gong (陶求功), Yang Yan-Fang (杨艳芳). Chin. Phys. B, 2012, 21(10): 100303.
[11] Photon tunneling and transmittance resonance through a multi-layer structure with a left-handed material
He Ying (何英), Zhang Xia (张霞), Yang Yan-Fang (杨艳芳), Li Chun-Fang (李春芳). Chin. Phys. B, 2011, 20(5): 054103.
[12] Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method
Sang Ming-Huang(桑明煌), Yu Zi-Xing(余子星), Li Cui-Cui(李翠翠), and Tu Kai(涂凯) . Chin. Phys. B, 2011, 20(12): 120304.
[13] Quantum reflection as the reflection of subwaves
Yuan Wen(袁文), Yin Cheng(殷澄), Wang Xian-Ping(王贤平), and Cao Zhuang-Qi(曹庄琪). Chin. Phys. B, 2010, 19(9): 093402.
[14] Energy eigenvalues from an analytical transfer matrix method
He Ying(何英), Zhang Fan-Ming(张凡明), Yang Yan-Fang(杨艳芳), and Li Chun-Fang(李春芳). Chin. Phys. B, 2010, 19(4): 040306.
[15] The analytical transfer matrix method for quantum reflection
Xu Tian(许田), Cao Zhuang-Qi(曹庄琪), and Fang Jing-Huai(方靖淮). Chin. Phys. B, 2010, 19(4): 040307.
No Suggested Reading articles found!