CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Terahertz wave generation in coupled quantum dots |
Ma Yu-Rong(马玉蓉)a), Guo Shi-Fang(郭世方)b), and Duan Su-Qing(段素青)b)† |
a. Beijing Vocational College of Electronic Science, Beijing 100176, China;
b. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract Based on coupled quantum dots, we present an interesting optical effect in a four-level loop coupled system. Both the two upper levels and the two lower levels are designed to be almost degenerate, which induces a considerable dipole moment. The terahertz wave is obtained from the low-frequency component of the photon emission spectrum. The frequency of the terahertz wave can be controlled by tuning the energy levels via designing the nanostructure appropriately or tuning the driving laser field. A terahertz wave with adjustable frequency and considerable intensity (100 times higher than that of the Rayleigh line) can be obtained. It provides an effective scheme for a terahertz source.
|
Received: 08 August 2011
Revised: 23 September 2011
Accepted manuscript online:
|
PACS:
|
78.66.Fd
|
(III-V semiconductors)
|
|
78.67.Hc
|
(Quantum dots)
|
|
73.21.-b
|
(Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874020 and 11074025) and the National Basic Research Program of China (Grant No. 2011CB922204). |
Corresponding Authors:
Duan Su-Qing,duan_suqing@iapcm.ac.cn
E-mail: duan_suqing@iapcm.ac.cn
|
Cite this article:
Ma Yu-Rong(马玉蓉), Guo Shi-Fang(郭世方), and Duan Su-Qing(段素青) Terahertz wave generation in coupled quantum dots 2012 Chin. Phys. B 21 037804
|
[1] Tonouchi M 2007 Nat. Photonics 1 97[2] Ito H, Nakajima F, Furuta T and Ishibashi T 2005 Semicond. Sci. Technol. 20 S191[3] Kawase K and Shikata J and Ito I 2001 J. Phys. D 34 R1[4] Belkin M A, Capasso F, Belyanin A, Sivco D L, Cho A Y, Oakley D C, Vineis C J and Turner G W 2007 Nat. Photonics 1 288[5] Kibis O V, Slepyan G Y, Maksimenko S A and Hoffmann A 2009 Phys. Rev. Lett. 102 023601[6] Ganeev R A, Singhal H, Naik P A, Kulagin I A, Redkin P V, Chakera J A, Tayyab M, Khan R A and Gupta P D 2009 Phys. Rev. A 80 033845[7] Xie Y, Duan S Q, Chu W D and Yang N 2010 Chin. Phys. B 19 117302[8] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y 1994 Science 264 553[9] Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Nature 417 156[10] Vitiello M S, Scamarcio G, Spagnolo V, Losco T, Green R P, Tredicucci A, Beere H E and Ritchie D A 2006 Appl. Phys. Lett. 88 241109[11] Straub A, Mosely T S, Gmachl C, Colombelli R, Troccoli M, Capasso F, Sivco D L and Cho A Y 2002 Appl. Phys. Lett. 80 2845[12] Williams B S 2007 Nat. Photonics 1 517[13] Scalari G, Walther C, Faist J, Beere H and Ritchie D 2006 Appl. Phys. Lett. 88 141102[14] Otsuji T, Hanabe M, Nishimura T and Sano E 2006 Opt. Express 14 4815[15] Sekine N and Hirakawa K 2005 Phys. Rev. Lett. 94 057408[16] Orihashi N, Suzuki S and Asada M 2005 Appl. Phys. Lett. 87 233501[17] Crowe T W, Bishop W L, Perterfi eld D W, Hesler J L and Weikle R M 2005 IEEE J. Solid-State Circuits 40 2104[18] Williams G P 2002 Rev. Sci. Instr. 73 1461[19] Bergner A, Heugen U, Br黱dermann E, Schwaab G, Havenith M, Chamberlin D R and Haller E E 2005 Rev. Sci. Instr. 76 063110[20] Ahn K J, Milde F and Knorr A 2007 Phys. Rev. Lett. 98 027401[21] Chassagneux Y 2009 Nature 457 174[22] Duan S Q, Zhang W, Xie Y, Chu W D and Zhao X G 2009 Phys. Rev. B 80 161304(R)[23] Carr G L, Martin M C, McKinney W R, Jordan K, Neil G T and Williams G P 2002 Nature 420 153[24] Sheng Z M, Mima K, Zhang J and Sanuki H 2005 Phys. Rev. Lett. 94 095003[25] Leemans W P, Geddes C G R, Faure J, T髏h Cs, van Tilborg J, Schroeder C B, Esarey E, Fubiani G, Auerbach D, Marcelis B, Carnahan M A, Kaindl R A, Byrd J and Martin M C 2003 Phys. Rev. Lett. 91 074802[26] Eberly J H and Fedorov M V 1992 Phys. Rev. A 45 4706[27] Avetissian H K, Avchyan B R and Mkrtchian G F 2010 Phys. Rev. A 82 063412[28] Millack T and Maquet A 1993 J. Mod. Opt. 40 2161[29] Piazza A D and Fiordilino E 2001 Phys. Rev. A 64 013802[30] Zhou Z Y and Yuan J M 2008 Phys. Rev. A 77 063411[31] Dakhnovskii Y and Metiu H 1993 Phys. Rev. A 48 2342[32] Minami Y, Nakajima M and Suemoto T 2011 Phys. Rev. A 83 023828[33] Silvermana K L, Mirin R P, Cundiff S T and Norman A G 2003 Appl. Phys. Lett. 82 4552[34] Andreev A D and O'Reilly E P 2005 Appl. Phys. Lett. 87 213106[35] Guo S F, Duan S Q, Xie Y, Chu W D and Zhang W 2011 New J. Phys. 13 053005 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|