Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 048402    DOI: 10.1088/1674-1056/21/4/048402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays

P. Balasubramaniama)†, M. Kalpanaa), and R. Rakkiyappanb)
a. Department of Mathematics, Gandhigram Rural Institute - Deemed University, Gandhigram-624 302, Tamilnadu, India;
b. Department of Mathematics, Bharathiar University, Coimbatore-641 046, Tamilnadu, India
Abstract  Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.
Keywords:  asymptotic stability      chaos      fuzzy cellular neural networks      linear matrix inequalities      synchronization  
Received:  26 August 2011      Revised:  30 August 2011      Accepted manuscript online: 
PACS:  84.35.+i (Neural networks)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported by No. DST/INSPIRE Fellowship/2010/[293]/dt. 18/03/2011.
Corresponding Authors:  P. Balasubramaniam,balugru@gmail.com     E-mail:  balugru@gmail.com

Cite this article: 

P. Balasubramaniam, M. Kalpana, and R. Rakkiyappan Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays 2012 Chin. Phys. B 21 048402

[1] Chua L O and Yang L 1988 IEEE Trans. Circuits Syst. 35 1257
[2] Chua L O and Yang L 1988 IEEE Trans. Circuits Syst. 35 1273
[3] Yang T, Yang L B, Wu C W and Chua L O 1996 Proceedings of the IEEE International Workshop on Cellular Neural Networks and Applications (Singapore: World Scientific) p. 181
[4] Yang T, Yang L B, Wu C W and Chua L O 1996 Proceedings of the IEEE International Workshop on Cellular Neural Networks and Applications (Singapore: World Scientific) p. 225
[5] Carroll T L and Pecora L M 1991 IEEE Trans. Circuits Syst. I 38 453
[6] Sun J, Liu G P, Chen J and Rees D 2009 Phys. Lett. A 373 342
[7] Balasubramaniam P, Kalpana M and Rakkiyappan R Circuits Systems Signal Process. 30 1595
[8] Blythe S, Mao X and Liao X 2001 J. Franklin Inst. 338 481
[9] Gao X, Zhong S and Gao F 2009 Nonlinear Anal. 71 2003
[10] Liu Y, Wang Z and Liu X 2008 Int. J. Comput. Math. 85 1299
[11] Zhang Y, Xu S and Chu Y 2011 Int. J. Comput. Math. 88 249
[12] Zhang C, He Y and Wu M 2010 Neurocomputing 74 265
[13] Yu W, Cao J and Lu W 2010 Neurocomputing 73 858
[14] Li T, Fei S, Zhu Q and Cong S 2008 Neurocomputing 71 3005
[15] Li T, Song A, Fei S and Guo Y 2009 Nonlinear Anal. 71 2372
[16] Li X and Bohner M 2010 Math. Comput. Modelling 52 643
[17] Huang H and Feng G 2009 Neural Networks 22 869
[18] Li X and Fu X 2011 Commun. Nonlinear Sci. Numer. Simul. 1 885
[19] Park Ju H 2009 Chaos, Solitons and Fractals 42 1299
[20] Wang K, Teng Z and Jiang H 2010 Math. Comput. Modelling 52 12
[21] Tang Y and Fang J 2009 Neurocomputing 72 3253
[22] Xia Y, Yang Z and Han M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 3645
[23] Yu F and Jiang H 2011 Neurocomputing 74 509
[24] Feng X, Zhang F and Wang W 2011 Chaos, Solitons and Fractals 44 9
[25] Boyd S, Ghaoui L E, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia, Pennsylvania: SIAM)
[26] Yang T and Yang L B 1996 IEEE Trans. Circuits Syst. I 43 880
[27] Liu Z, Zhang H and Wang Z 2009 Neurocomputing 72 1056
[28] Gu K 2000 Proceedings of the 39th IEEE Conference on Decision and Control December 2000 Sydney, Australia p. 2805
[29] Li T, Fei S and Zhu Q 2009 Nonlinear Anal. Real World Appl. 10 1229
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[3] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[4] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[5] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[6] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[7] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[8] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[9] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[10] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[11] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[12] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[13] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[14] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[15] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
No Suggested Reading articles found!