Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 048401    DOI: 10.1088/1674-1056/21/4/048401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The influences of model parameters on the characteristics of memristors

Zhou Jing(周静) and Huang Da(黄达)
National Laboratory for Parallel and Distributed Processing, School of Computer, National University of Defense Technology, Changsha 410073, China
Abstract  As the fourth passive circuit component, a memristor is a nonlinear resistor that can “remember” the amount of charge passing through it. The characteristic of “remembering” the charge and non-volatility makes memristors great potential candidates in many fields. Nowadays, only a few groups have the ability to fabricate memristors, and most researchers study them by theoretic analysis and simulation. In this paper, we first analyse the theoretical base and characteristics of memristors, then use a simulation program with integrated circuit emphasis as our tool to simulate the theoretical model of memristors and change the parameters in the model to see the influence of each parameter on the characteristics. Our work supplies researchers engaged in memristor-based circuits with advice on how to choose the proper parameters.
Keywords:  memristor      I-V characteristics      simulation program with integrated circuit emphasis  
Received:  24 July 2011      Revised:  30 September 2011      Accepted manuscript online: 
PACS:  84.32.-y (Passive circuit components)  
  89.20.Ff (Computer science and technology)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61003082) and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921062).
Corresponding Authors:  Zhou Jing,jingzhou0210@126.com     E-mail:  jingzhou0210@126.com

Cite this article: 

Zhou Jing(周静) and Huang Da(黄达) The influences of model parameters on the characteristics of memristors 2012 Chin. Phys. B 21 048401

[1] Song T Q and Gao S J http://book.51cto.com/art/201103/246990.htm (in Chinese) [2011-07-20]
[2] Chua L O 1971 IEEE Trans. Circ. Theor. 18 507
[3] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[4] Biolek Z, Biolek D and Biolkova V 2009 Radioengineering 18 210
[5] Benderli S and Wey T A 2009 Electron. Lett. 45 377
[6] Batas D and Fiedler H 2011 IEEE Trans. Nanotechnol. 10 250
[7] Zhang X, Zhou Y Z, Bi Q, Yang X H and Zu Y X 2010 Acta Phys. Sin. 59 6673 (in Chinese)
[8] Pershin Y V, La Fontaine S and Ventra M D 2009 Phys. Rev. E 80 021926
[9] Bao B C, Liu Z and Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese)
[10] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
[11] Vontobel P O, Robinett W, Kuekes P J, Stewart D R, Straznechy J and Williams R S 2009 Nanotechnology 20 425204
[12] Yang J J, Pickett M D, Li X, Ohlberg D A A, Stewart D R and Williams R S 2008 Nature Nanotechnology 3 429
[13] Lehtonen E and Laiho M 2010 Proceedings of the 12th International Workshop on Cellular Nanoscale Networks and Their Applications February 3-5, 2010 Berkeley, California p. 1
[14] Nagel L W 1975 SPICE2, A Computer Program to Simulate Semiconductor Circuits: User's Guide for Spice & Abridgement of Memorandum (California: University of California, Electronics Research Laboratory) pp. 1-9
[15] Barker D 1991 MINNIE and HSPICE for Analogue Circuit Simulation (Boston/Dordrecht/London: Kluwer Academic Publishers) pp. 3-10
[16] Synopsis Inc. 2004 HSPICE Manual 3rd edn. (California: Mountain View) pp. 2-20
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[4] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[5] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[8] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[9] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[10] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[11] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[12] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[13] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[14] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[15] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
No Suggested Reading articles found!