Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 046102    DOI: 10.1088/1674-1056/21/4/046102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Hcp-icosahedron structural transformation induced by the change in Ag concentration during the freezing of (CoAg)561 clusters

Xiao Xu-Yang(肖绪洋)
School of Electronics Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
Abstract  The synergy effect of alloy elements in bimetallic clusters can be used to tune the chemical and physical properties. Research on the influences of alloy concentration and distribution on the frozen structure of bimetallic clusters plays a key role in exploring new structural materials. In this paper, we study the influence of Ag concentration on the frozen structure of the (AgCo)561 cluster by using molecular dynamics simulation with a general embedded atom method. The results indicate that the structure and chemical ordering of the (AgCo)561 cluster are strongly related to Ag concentration. Hcp-icosahedron structural transformation in the frozen (CoAg)561 cluster can be induced by changing Ag concentration. The chemical ordering also transforms to Janus-like Co-Ag from core-shell Co-Ag.
Keywords:  bimetallic cluster      freeze      molecular dynamics      structural transformation  
Received:  11 September 2011      Revised:  26 September 2011      Accepted manuscript online: 
PACS:  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
  36.40.Ei (Phase transitions in clusters)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the Science Foundation of Chongqing Committee of Education of China (Grant No. KJ111206) and the Fund of Chongqing University of Arts and Sciences (Grant No. Z2011RCYJ05).
Corresponding Authors:  Xiao Xu-Yang,xuyxiao@126.com     E-mail:  xuyxiao@126.com

Cite this article: 

Xiao Xu-Yang(肖绪洋) Hcp-icosahedron structural transformation induced by the change in Ag concentration during the freezing of (CoAg)561 clusters 2012 Chin. Phys. B 21 046102

[1] Wang G H 2003 Cluster Physics (Shanghai: Shanghai Science & Technology Press) (in Chinese)
[2] Ferrando R, Jellinek J and Johnston R L 2008 Chem. Rev. 108 845
[3] Chushak Y G and Bartell L S 2003 J. Phys. Chem. B 107 3747
[4] Kim D H, Kim H Y, Ryu J H and Lee H M 2009 Phys. Chem. Chem. Phys. 11 5079
[5] Fromen M C, Morillo J, Casanove M J and Lecante P 2006 Europhys. Lett. 73 885
[6] Dorfbauer F, Schrefl T, Kirschner M, Hrkac G, Suess D, Ertl O and Fidler J 2006 J. Appl. Phys. 99 08G706
[7] Kim H Y, Kim H G, Ryu J H and Lee H M 2007 Phys. Rev. B 75 212105
[8] Van Hoof T and Hou M 2005 Phys. Rev. B 72 115434
[9] Parsina I and Baletto F 2010 J. Phys. Chem. C 114 1504
[10] Baletto F, Mottet C and Ferrando R 2003 Phys. Rev. Lett. 90 135504
[11] Wang Q, Li G J, Li D G, Lü X and He J C 2009 Chin. Phys. B 18 1843
[12] Ding F, Bolton K and Rosen A 2004 J. Vac. Sci. Technol. A 22 1471
[13] Nanda K K, Sahu S N and Behera S N 2002 Phys. Rev. A 66 013208
[14] Xiao X Y 2010 Chin. Phys. B 19 113604
[15] Li G J, Liu T, Wang Q, Li D G, Lü X and He J C 2008 Phys. Lett. A 372 6764
[16] Li G J, Wang Q, Li D G, Lü X and He J C 2009 Mater. Chem. Phys. 114 746
[17] Li G J, Wang Q, Cao Y Z, Lü X, Li D G and He J C 2011 Acta Phys. Sin. 60 093601 (in Chinese)
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!