Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040404    DOI: 10.1088/1674-1056/21/4/040404
GENERAL Prev   Next  

Scattering and absorption of particles by a black hole involving a global monopole

Shao Jian Zhou(邵建舟) and Wang Yong Jiu(王永久)
Institute of Physics, Hunan Normal University, Changsha 410081, China
Abstract  Under the conditions that the wavelength of a particle is much larger than its radius of central mass, and the Schwarzschild field is weak, the scattering of a particle has been studied by many researchers. They obtained that scalar and vector particles abide by Rutherforďs angle distribution by using the low level perturbation method and the scattered fielďs approximation in a weak field. The scattering cross section of a photon coincides with the section in Newton's field of point mass. We can obtain the photon's polarization effect by calculating the second-order perturbation in the linear Schwarzschild field. This article discusses the scattering and absorption of a particle by a black hole involving a global monopole by using the aforesaid method.
Keywords:  scattering      absorption      black hole      wave function  
Received:  29 July 2011      Revised:  27 September 2011      Accepted manuscript online: 
PACS:  04.70.Bw (Classical black holes)  
  03.65.Nk (Scattering theory)  
  04.30.Nk (Wave propagation and interactions)  
  97.60.Lf.  
Fund: Project supported by the State Key Development Program for Basic Research of China(Grant No.2010CB832800),the Na-tional Natural Science Foundation of China(Grant No.10873004),the Scientific Research Fund of Hunan Provincial EducationDepartment,China(Grant No.08B051),and the Scientific Research Fund of Hunan Normal University
Corresponding Authors:  Wang Yong-Jiu, E-mail:wyj@hunnu.edu.cn     E-mail:  wyj@hunnu.edu.cn

Cite this article: 

Shao Jian Zhou(邵建舟) and Wang Yong Jiu(王永久) Scattering and absorption of particles by a black hole involving a global monopole 2012 Chin. Phys. B 21 040404

[1] Matzner R A and Math J 1968 Phys. Rev. D 9 163
[2] Fabbri R 1975 Phys. Rev. D 12 933
[3] Peters P C 1976 Phys. Rev. D 13 775
[4] de Logi W K and Kovacs S J 1977 Phys. Rev. D 16 237
[5] Sanchez N G and Math J 1976 Phys. Rev. D 17 688
[6] Sanchez N G 1977 Phys. Rev. D 16 937
[7] Sanchez N G 1978 Phys. Rev. D 18 1030
[8] Sanchez N G 1978 Phys. Rev. D 18 1798
[9] Zhang T R and DeWitt-Morette C 1984 Phys. Rev. Lett. 18 2313
[10] Matzner R A, DeWitt-Morette C, Nelson B and Zhang T R 1985 Phys. Rev. D 31 1869
[11] Anninos P, DeWitt-Morette C, Matzner R A, Yioutas P and Zhang T R 1992 Phys. Rev. D 18 4477
[12] Andersson N 1995 Phys. Rev. D 52 1808
[13] Andersson N and Jensen B P 2001 arXiv. gr-qc/0011025
[14] Doran C J L and Lasenby A N 2002 Phys. Rev. D 52 024006
[15] Chen J H and Wang Y J 2011 Phys. Rev. D 20 030401
[16] Chen J H and Wang Y J 2011 Phys. Rev. D 55 813816
[17] Chandrasekhar S 1983 The Mathematical Theory of Black Holes (New York: Oxford University Press)
[18] Futterman J A H, Handler F A and Matzner R A 1988 Scattering from Black Hole (Cambridge: Cambridge University Press)
[19] Wang Y J 2008 Classic Black Hole and Quantum Black Hole (Beijing: Science Press)
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[3] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[4] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[5] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[6] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[7] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[8] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[9] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[10] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[11] The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory
Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱). Chin. Phys. B, 2023, 32(1): 010401.
[12] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[13] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[14] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[15] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
No Suggested Reading articles found!