Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040403    DOI: 10.1088/1674-1056/21/4/040403
GENERAL Prev   Next  

Holographic superconductor models in the non-minimal derivative coupling theory

Chen Song-Bai(陈松柏), Pan Qi-Yuan(潘启沅), and Jing Ji-Liang(荆继良)
a. Institute of Physics and Department of Physics, Hunan Normal University, Changsha 410081, China;
b. Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China
Abstract  We study a general class of holographic superconductor models via the Stückelberg mechanism in the non-minimal derivative coupling theory in which the charged scalar field is kinetically coupling to Einstein's tensor. We explore the effects of the coupling parameter on the critical temperature, the order of phase transitions and the critical exponents near the second-order phase transition point. Moreover, we compute the electrical conductivity using the probe approximation and check the ratios $\omega$g/Tc for the different coupling parameters.
Keywords:  holographic superconductor      non-minimal derivative coupling      Einstein's tensor  
Received:  22 July 2011      Revised:  28 September 2011      Accepted manuscript online: 
PACS:  04.70.-s (Physics of black holes)  
  11.25.Tq (Gauge/string duality)  
  74.20.-z (Theories and models of superconducting state)  
Fund: Project supported by the National Natural Science Foundation of China(Grant No.10875041),the Program for New CenturyExcellent Talents in University(Grant No.10-0165),the Program for Changjiang Scholars and Innovative Research Team inUniversity(Grant No.IRT0964),the Construct Program of Key Disciplines in Hunan Province,and the Project of KnowledgeInnovation Program of Chinese Academy of Sciences(Grant No.KJCX2.YW.W10)
Corresponding Authors:  Chen Song-Bai, E-mail:Csb3752@163.com     E-mail:  Csb3752@163.com

Cite this article: 

Chen Song-Bai(陈松柏), Pan Qi-Yuan(潘启沅), and Jing Ji-Liang(荆继良) Holographic superconductor models in the non-minimal derivative coupling theory 2012 Chin. Phys. B 21 040403

[1] Maldacena J M 1998 Adv. Theor. Math. Phys. 2 231
[2] Witten E 1998 Adv. Theor. Math. Phys. 2 253
[3] Gubser S S, Klebanov I R and Polyakov A M 1998 Phys. Lett. B 428 105
[4] Gubser S S 2008 Phys. Rev. D 78 065034
[5] Hartnoll S A, Herzog C P and Horowitz G T 2008 Phys. Rev. Lett. 101 031601
[6] Hartnoll S A, Herzog C P and Horowitz G T 2008 J. High Energy Phys. 0812 015
[7] Hartnoll S A 2009 Class. Quantum Grav. 26 224002
[8] Herzog C P 2009 J. Phys. A: Math. Theor. 42 343001
[9] Basu P, Mukherjee A and Shieh H H 2009 Phys. Rev. D 79 045010
[10] Herzog C P, Kovtun P K and Son D T 2009 Phys. Rev. D 79 066002
[11] Gubser S S 2005 Class. Quantum Grav. 22 5121
[12] Gregory R, Kanno S and Soda J 2009 J. High Energy Phys. bf0910 010
[13] Zeng H, Fan Z and Ren Z 2009 Phys. Rev. D 80 066001
[14] Gubser S S 2008 Phys. Rev. Lett. 101 191601
[15] Roberts M M and Hartnoll S A 2008 J. High Energy Phys. 0808 035
[16] Gubser S S and Pufu S S 2008 J. High Energy Phys. 0811 033
[17] Cai R and Zhang H 2010 Phys. Rev. D 81 066003
[18] Pan Q Y, Wang B, Papantonopoulos E, Oliveira J and Pavan A 2010 Phys. Rev. D 81 106007
[19] Jing J, Wang L and Chen S 2010 arXiv: 1001.1472v4 [hep-th]
[20] Sin S, Xu S and Zhou Y 2009 arXiv: 0909.4857v4 [hep-th]
[21] Brynjolfsson E J, Danielsson U H, Thorlacius L and Zingg T 2010 J. Phys. A: Math. Theor. 43 065401
[22] Denef F and Hartnoll S A 2009 arXiv: 0901.1160v2 [hep-th]
[23] Gubser S S, Herzog C P, Pufu S S and Tesileanu T 2009 Phys. Rev. Lett. 103 141601
[24] Gauntlett J P, Sonner J and Wiseman T 2009 Phys. Rev. Lett. 103 151601
[25] Gubser S S, Pufu S S and Rocha F D 2010 Phys. Lett. B 683 201
[26] Ammon M, Erdmenger J, Kaminski M and Kerner P 2009 Phys. Lett. B 680 516
[27] Horowitz G T and Roberts M M 2008 Phys. Rev. D 78 126008
[28] Gubser S S and Nellore A 2009 arXiv: 0908.1972v1 [hep-th]
[29] Horowitz G T and Roberts M M 2009 J. High Energy Phys. 0911 015
[30] Konoplya R A and Zhidenko A 2010 Phys. Lett. B 686 199
[31] Nishioka T, Ryu S and Takayanagi T 2010 J. High Energy Phys. bf1003 131
[32] Ge X H, Wang B, Wu S F and Yang G H 2010 arXiv: 1002.4901 [hep-th]
[33] Brihaye Y and Hartmann B 2010 Phys. Rev. D 81 126008
[34] Barclay L, Gregory R, Kanno S and Sutcliffe P 2010 J. High Energy Phys. 1012 029
[35] Cai R G, Nie Z Y and Zhang H Q 2010 Phys. Rev. D 82 066007
[36] Basu P, He J, Mukherjee A and Shieh H 2010 Phys. Lett. B 689 45
[37] Sonner J 2009 Phys. Rev. D 80 084031
[38] Nakano1 E and Wen W 2008 Phys. Rev. D 78 046004
[39] Chen S, Wang L, Ding C and Jing J 2010 Nucl. Phys. B 836 222
[40] Jing J and Chen S 2010 Phys. Lett. B 686 68
[41] Ammon M, Erdmenger J, Grass V, Kerner P and O'Bannon A 2010 Phys. Lett. B 686 192
[42] Maeda K, Natsuume M and Okamura T 2009 Phys. Rev. D 79 126004
[43] Franco S, Garcia-Garcia A M and Rodriguez-Gomez D 2010 J. High Energy Phys. 04 092
[44] Pan Q Y and Wang B 2010 Phys. Lett. B 693 159
[45] Jing J, Wang L, Pan Q Y and Chen S 2011 Phys. Rev. D 83 066010
[46] Aprile F and Russo J 2010 Phys. Rev. D 81 026009
[47] Sushkov S V 2009 Phys. Rev. D 80 103505
[48] Gao C J 2010 JCAP 06 023
[49] Granda L N 2009 arXiv: 0911.3702v2 [hep-th]
[50] Saridakis E N and Sushkov S V 2010 Phys. Rev. D 81 083510
[51] Chen S and Jing J 2010 Phys. Rev. D 82 084006
[52] Chen S and Jing J 2010 Phys. Lett. B 691 254
[53] Ding C, Liu C, Jing J and Chen S 2010 J. High Energy Phys. bf1011 146
[54] Klebanov I R and Witten E 1999 Nucl. Phys. B 556 89
[1] The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory
Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱). Chin. Phys. B, 2023, 32(1): 010401.
[2] Holographic heat engine efficiency of hyperbolic charged black holes
Wei Sun(孙威) and Xian-Hui Ge(葛先辉). Chin. Phys. B, 2021, 30(10): 109501.
[3] A note on the definition of gravitational energy for quadratic curvature gravity via topological regularization
Meng-Liang Wang(王梦亮) and Jun-Jin Peng(彭俊金). Chin. Phys. B, 2020, 29(12): 120401.
[4] Thermodynamics and weak cosmic censorship conjecture of charged AdS black hole in the Rastall gravity with pressure
Xin-Yun Hu(胡馨匀), Ke-Jian He(何柯健), Zhong-Hua Li(李中华), Guo-Ping Li(李国平). Chin. Phys. B, 2020, 29(5): 050401.
[5] Geometry and thermodynamics of smeared Reissner-Nordström black holes in d-dimensional AdS spacetime
Bo-Bing Ye(叶伯兵), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久). Chin. Phys. B, 2017, 26(9): 090202.
[6] Gravitational quasi-normal modes of static R2 Anti-de Sitter black holes
Hong Ma(马洪), Jin Li(李瑾). Chin. Phys. B, 2017, 26(6): 060401.
[7] Thermodynamics and geometrothermodynamics of regular black hole with nonlinear electrodynamics
Qiao-Shan Gan(甘俏姗), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久). Chin. Phys. B, 2016, 25(12): 120401.
[8] Hawking radiation of stationary and non-stationary Kerr–de Sitter black holes
T. Ibungochouba Singh. Chin. Phys. B, 2015, 24(7): 070401.
[9] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[10] Absorption cross section of black holes with a global monopole
Huang Hai (黄海), Wang Yong-Jiu (王永久), Chen Ju-Hua (陈菊华). Chin. Phys. B, 2013, 22(7): 070401.
[11] Spectroscopy via adiabatic covariant action for the Bañados-Teitelboim-Zanelli (BTZ) black hole
Li Hui-Ling (李慧玲), Lin Rong (林榕), Cheng Li-Ying (程丽英). Chin. Phys. B, 2013, 22(5): 050402.
[12] Quantum nonthermal radiation and horizon surface gravity of an arbitrarily accelerating black hole with electric charge and magnetic charge
Xie Zhi-Kun (谢志堃), Pan Wei-Zhen (潘伟珍), Yang Xue-Jun (杨学军). Chin. Phys. B, 2013, 22(3): 039701.
[13] Area spectrum of the three-dimensional Gödel black hole
Li Hui-Ling (李慧玲). Chin. Phys. B, 2012, 21(12): 120401.
[14] Absorption of massless scalar wave from Schwarzschild black hole surrounded by quintessence
Liao Hao (廖浩), Chen Ju-Hua (陈菊华), Wang Yong-Jiu (王永久 ). Chin. Phys. B, 2012, 21(8): 080402.
[15] Area and entropy spectra of black holes via an adiabatic invariant
Liu Cheng-Zhou(刘成周) . Chin. Phys. B, 2012, 21(7): 070401.
No Suggested Reading articles found!