Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 027104    DOI: 10.1088/1674-1056/21/2/027104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Role of Ga-doping in iron–gallium alloy clusters

Tang Pei-Zhe(汤沛哲)a), Liu Hai-Tao(刘海涛) b)†, Zhu Jie(朱洁)c), Wang Shan-Ying(王山鹰)a), and Duan Wen-Hui(段文晖)a)
a. Department of Physics, Tsinghua University, Beijing 100084, China;
b. The Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
c. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Abstract  The structural and magnetic properties of Fen-mGam (n=3~6, m=0~2; n=13, m=0~3) alloy clusters have been studied using density functional theory. The substitutional doping is favourable for small clusters with up to six atoms at low Ga concentration and substitutional Ga atoms in 13-atom clusters prefer surface sites. The Ga-doping generally could reduce the energetic stability but enhance the electronic stability of Fe clusters, along with a decrease of the local magnetic moments of Fe atoms around Ga dopants. These findings provide a microscopic insight into Fe-Ga alloys which are well-known magnetostriction materials.
Keywords:  iron-gallium alloy clusters      density functional theory      stability      magnetic properties  
Received:  06 July 2011      Revised:  06 September 2011      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  36.40.Cg (Electronic and magnetic properties of clusters)  
Fund: Project supported by the Science Foundation of the Ministry of Science and Technology of China (Grant Nos. 2011CB606405 and 2011CB921901), the National Natural Science Foundation of China (Grant No. 10734140), and the Science Foundation of the State Key Laboratory for Advanced Metals and Materials (Grant No. 2008ZD-04).
Corresponding Authors:  Liu Hai-Tao,liu_haitao@iapcm.ac.cn     E-mail:  liu_haitao@iapcm.ac.cn

Cite this article: 

Tang Pei-Zhe(汤沛哲), Liu Hai-Tao(刘海涛), Zhu Jie(朱洁), Wang Shan-Ying(王山鹰), and Duan Wen-Hui(段文晖) Role of Ga-doping in iron–gallium alloy clusters 2012 Chin. Phys. B 21 027104

[1] Wilcoxon J P and Abrams B L 2006 emphChem. Soc. Rev. 35 1162
[2] Ferrando R, Jellinek J and Johnston R L 2008 emphChem. Rev. 108 845
[3] Bracey C L, Ellis P R and Hutchings G J 2009 emphChem. Soc. Rev. 38 2231
[4] Yin S, Moro R, Xu X and de Heer W A 2007 emphPhys. Rev. Lett. 98 113401
[5] Tarakeshwar P, Kumar T J D and Balakrishnan N 2009 emphJ. Chem. Phys. 130 114301
[6] Peng D L, Hihara T and Sumiyama K 2003 emphAppl. Phys. Lett. 83 350
[7] Mattei G, Mazzoldi P and Bernas H 2010 emph“Metal Nanoclusters for Optical Properties”. In emphMaterials Science with Ion Beams ed. Bernas H (Berlin: Springer-Verlag)
[8] Cottancin E, Lermé J, Gaudry M, Pellarin M, Vialle J-L, Broyer M, Prével B, Treilleux M and Mélinon P 2000 emphPhys. Rev. B 62 5179
[9] Wang S Y, Duan W H and Wang C Y 2002 emphJ. Phys. B: At. Mol. Opt. Phys. 35 4015
[10] Chrétien S, Gordon M S and Metiu H 2004 emphJ. Chem. Phys. 121 9931
[11] Mu noz-Navia M, Dorantes-Dávila J, Zitoun D, Amiens C, Jaouen N, Rogalev A, Respaud M and Pastor G M 2009 emphAppl. Phys. Lett. 95 233107
[12] Zhang M, Feng X J, Zhao L X, He L M and Luo Y H 2010 emphChin. Phys. B 19 043103
[13] Sun S H, Murray C B, Weller D, Folks L and Moser A 2000 emphScience 287 1989
[14] Clark A E, Restorff J B, Wun-Fogle M, Lograsso T A and Schlagel D L 2000 emphIEEE Trans. Magn. 36 3238
[15] Guruswamy S, Srisukhumbowornchai N, Clark A E, Restorff J B and Wun-Fogle M 2000 emphScr. Mater. 43 239
[16] McGary P D, Tan L, Zou J, Stadler B J H, Downey P R and Flatau A B 2006 emphJ. Appl. Phys. 99 08B310
[17] Ueno T, Summers E, Wun-Fogle M and Higuchi T 2008 emphSens. Actuators A 148 280
[18] Wu R Q 2002 emphJ. Appl. Phys. 91 7358
[19] Zhang Y N, Cao J X and Wu R Q 2010 emphAppl. Phys. Lett. 96 062508
[20] Wang H, Zhang Y N, Yang T, Zhang Z D, Sun L Z and Wu R Q 2010 emphAppl. Phys. Lett. 97 262505.
[21] Ruffoni M P, Pascarelli S, Grössinger R, Sato Turtelli R, Bormio-Nunes C and Pettifer R F 2008 emphPhys. Rev. Lett. 101 147202
[22] Zheng L, Jiang C B, Shang J X and Xu H B 2009 emphChin. Phys. B 18 1647
[23] Cao H, Gehring P M, Devreugd C P, Rodriguez-Rivera J A, Li J and Viehland D 2009 emphPhys. Rev. Lett. 102 127201
[24] Du Y, Huang M, Chang S, Schlagel D L, Lograsso T A and McQueeney R J 2010 emphPhys. Rev. B 81 054432
[25] Reddy B V, Deevi S C, Lilly A C and Jena P 2001 emphJ. Phys.: Condens. Matter 13 8363
[26] Delley B 1990 emphJ. Chem. Phys. 92 508
[27] Perdew J P and Wang Y 1992 emphPhys. Rev. B 45 13244
[28] Chrétien S and Salahub D R 2002 emphPhys. Rev. B 66 155425
[29] vSljivanvcanin vZ and Pasquarello A 2003 emphPhys. Rev. Lett. 90 247202
[30] Gutsev G L and Bauschlicher Jr C W 2003 emphJ. Phys. Chem. A 107 7013
[31] Roy D R, Robles R and Khanna S N 2010 emphJ. Chem. Phys. 132 194305
[32] Rollmann G, Entel P and Sahoo S 2006 emphComput. Mater. Sci. 35 275 and references therein
[33] Cheng Z D, Ling T and Zhu J 2010 emphChin. Phys. B 19 057101
[34] Sakurai M, Watanabe K, Sumiyama K and Suzuki K 1999 emphJ. Chem. Phys. 111 235
[35] Dunlap B I 1990 emphPhys. Rev. A 41 5691
[36] Bobadova-Parvanova P, Jackson K A, Srinivas S and Horoi M 2002 emphPhys. Rev. B 66 195402
[37] Song B and Cao P L 2005 emphJ. Chem. Phys. 123 144312
[38] Sharma B D and Dohohue J 1962 emphZeitschrift für Kristallographie 117 293
[39] Diéguez O, Alemany M M G, Rey C, Ordejón P and Gallego L J 2001 emphPhys. Rev. B 63 205407
[40] Sun Q, Gong X G, Zheng Q Q and Wang G H 1996 emphActa Phys. Sin. 45 1146 (in Chinese)
[41] Chen H, Yuan H K, Kuang A L, Miao Y, Chen P and Xiong Z H 2008 emphPhys. Rev. B 77 184429
[42] Aguilera-Granja F and Vega V 2009 emphPhys. Rev. B 79 144423
[43] Sahoo S, Hucht A, Gruner M E, Rollmann G, Entel P, Postnikov A, Ferrer J, Fernández-Seivane L, Richter M, Fritsch D and Sil S 2010 emphPhys. Rev. B 82 054418
[44] Aldred A T 1966 emphJ. Appl. Phys. 37 1344
[45] Srisukhumbowornchai N and Guruswamy N 2001 emphJ. Appl. Phys. 90 5680
[46] Khmelevska T, Khmelevskyi S and Mohn P 2008 emphJ. Appl. Phys. 103 073911
[47] Hirshfeld F L 1977 emphTheor. Chim. Acta B 44 129
[48] Mulliken R S 1955 emphJ. Chem. Phys. 23 1833
[49] Guerra C F, Handgraaf J W, Baerends E J and Bickelhaupt F M 2004 emphJ. Comput. Chem. 25 189
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[5] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[6] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[9] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[10] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[11] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[12] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[13] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[14] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[15] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
No Suggested Reading articles found!