CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Role of Ga-doping in iron–gallium alloy clusters |
Tang Pei-Zhe(汤沛哲)a), Liu Hai-Tao(刘海涛) b)†, Zhu Jie(朱洁)c), Wang Shan-Ying(王山鹰)a), and Duan Wen-Hui(段文晖)a) |
a. Department of Physics, Tsinghua University, Beijing 100084, China;
b. The Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
c. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract The structural and magnetic properties of Fen-mGam (n=3~6, m=0~2; n=13, m=0~3) alloy clusters have been studied using density functional theory. The substitutional doping is favourable for small clusters with up to six atoms at low Ga concentration and substitutional Ga atoms in 13-atom clusters prefer surface sites. The Ga-doping generally could reduce the energetic stability but enhance the electronic stability of Fe clusters, along with a decrease of the local magnetic moments of Fe atoms around Ga dopants. These findings provide a microscopic insight into Fe-Ga alloys which are well-known magnetostriction materials.
|
Received: 06 July 2011
Revised: 06 September 2011
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
36.40.Cg
|
(Electronic and magnetic properties of clusters)
|
|
Fund: Project supported by the Science Foundation of the Ministry of Science and Technology of China (Grant Nos. 2011CB606405 and 2011CB921901), the National Natural Science Foundation of China (Grant No. 10734140), and the Science Foundation of the State Key Laboratory for Advanced Metals and Materials (Grant No. 2008ZD-04). |
Corresponding Authors:
Liu Hai-Tao,liu_haitao@iapcm.ac.cn
E-mail: liu_haitao@iapcm.ac.cn
|
Cite this article:
Tang Pei-Zhe(汤沛哲), Liu Hai-Tao(刘海涛), Zhu Jie(朱洁), Wang Shan-Ying(王山鹰), and Duan Wen-Hui(段文晖) Role of Ga-doping in iron–gallium alloy clusters 2012 Chin. Phys. B 21 027104
|
[1] |
Wilcoxon J P and Abrams B L 2006 emphChem. Soc. Rev. 35 1162
|
[2] |
Ferrando R, Jellinek J and Johnston R L 2008 emphChem. Rev. 108 845
|
[3] |
Bracey C L, Ellis P R and Hutchings G J 2009 emphChem. Soc. Rev. 38 2231
|
[4] |
Yin S, Moro R, Xu X and de Heer W A 2007 emphPhys. Rev. Lett. 98 113401
|
[5] |
Tarakeshwar P, Kumar T J D and Balakrishnan N 2009 emphJ. Chem. Phys. 130 114301
|
[6] |
Peng D L, Hihara T and Sumiyama K 2003 emphAppl. Phys. Lett. 83 350
|
[7] |
Mattei G, Mazzoldi P and Bernas H 2010 emph“Metal Nanoclusters for Optical Properties”. In emphMaterials Science with Ion Beams ed. Bernas H (Berlin: Springer-Verlag)
|
[8] |
Cottancin E, Lermé J, Gaudry M, Pellarin M, Vialle J-L, Broyer M, Prével B, Treilleux M and Mélinon P 2000 emphPhys. Rev. B 62 5179
|
[9] |
Wang S Y, Duan W H and Wang C Y 2002 emphJ. Phys. B: At. Mol. Opt. Phys. 35 4015
|
[10] |
Chrétien S, Gordon M S and Metiu H 2004 emphJ. Chem. Phys. 121 9931
|
[11] |
Mu noz-Navia M, Dorantes-Dávila J, Zitoun D, Amiens C, Jaouen N, Rogalev A, Respaud M and Pastor G M 2009 emphAppl. Phys. Lett. 95 233107
|
[12] |
Zhang M, Feng X J, Zhao L X, He L M and Luo Y H 2010 emphChin. Phys. B 19 043103
|
[13] |
Sun S H, Murray C B, Weller D, Folks L and Moser A 2000 emphScience 287 1989
|
[14] |
Clark A E, Restorff J B, Wun-Fogle M, Lograsso T A and Schlagel D L 2000 emphIEEE Trans. Magn. 36 3238
|
[15] |
Guruswamy S, Srisukhumbowornchai N, Clark A E, Restorff J B and Wun-Fogle M 2000 emphScr. Mater. 43 239
|
[16] |
McGary P D, Tan L, Zou J, Stadler B J H, Downey P R and Flatau A B 2006 emphJ. Appl. Phys. 99 08B310
|
[17] |
Ueno T, Summers E, Wun-Fogle M and Higuchi T 2008 emphSens. Actuators A 148 280
|
[18] |
Wu R Q 2002 emphJ. Appl. Phys. 91 7358
|
[19] |
Zhang Y N, Cao J X and Wu R Q 2010 emphAppl. Phys. Lett. 96 062508
|
[20] |
Wang H, Zhang Y N, Yang T, Zhang Z D, Sun L Z and Wu R Q 2010 emphAppl. Phys. Lett. 97 262505.
|
[21] |
Ruffoni M P, Pascarelli S, Grössinger R, Sato Turtelli R, Bormio-Nunes C and Pettifer R F 2008 emphPhys. Rev. Lett. 101 147202
|
[22] |
Zheng L, Jiang C B, Shang J X and Xu H B 2009 emphChin. Phys. B 18 1647
|
[23] |
Cao H, Gehring P M, Devreugd C P, Rodriguez-Rivera J A, Li J and Viehland D 2009 emphPhys. Rev. Lett. 102 127201
|
[24] |
Du Y, Huang M, Chang S, Schlagel D L, Lograsso T A and McQueeney R J 2010 emphPhys. Rev. B 81 054432
|
[25] |
Reddy B V, Deevi S C, Lilly A C and Jena P 2001 emphJ. Phys.: Condens. Matter 13 8363
|
[26] |
Delley B 1990 emphJ. Chem. Phys. 92 508
|
[27] |
Perdew J P and Wang Y 1992 emphPhys. Rev. B 45 13244
|
[28] |
Chrétien S and Salahub D R 2002 emphPhys. Rev. B 66 155425
|
[29] |
vSljivanvcanin vZ and Pasquarello A 2003 emphPhys. Rev. Lett. 90 247202
|
[30] |
Gutsev G L and Bauschlicher Jr C W 2003 emphJ. Phys. Chem. A 107 7013
|
[31] |
Roy D R, Robles R and Khanna S N 2010 emphJ. Chem. Phys. 132 194305
|
[32] |
Rollmann G, Entel P and Sahoo S 2006 emphComput. Mater. Sci. 35 275 and references therein
|
[33] |
Cheng Z D, Ling T and Zhu J 2010 emphChin. Phys. B 19 057101
|
[34] |
Sakurai M, Watanabe K, Sumiyama K and Suzuki K 1999 emphJ. Chem. Phys. 111 235
|
[35] |
Dunlap B I 1990 emphPhys. Rev. A 41 5691
|
[36] |
Bobadova-Parvanova P, Jackson K A, Srinivas S and Horoi M 2002 emphPhys. Rev. B 66 195402
|
[37] |
Song B and Cao P L 2005 emphJ. Chem. Phys. 123 144312
|
[38] |
Sharma B D and Dohohue J 1962 emphZeitschrift für Kristallographie 117 293
|
[39] |
Diéguez O, Alemany M M G, Rey C, Ordejón P and Gallego L J 2001 emphPhys. Rev. B 63 205407
|
[40] |
Sun Q, Gong X G, Zheng Q Q and Wang G H 1996 emphActa Phys. Sin. 45 1146 (in Chinese)
|
[41] |
Chen H, Yuan H K, Kuang A L, Miao Y, Chen P and Xiong Z H 2008 emphPhys. Rev. B 77 184429
|
[42] |
Aguilera-Granja F and Vega V 2009 emphPhys. Rev. B 79 144423
|
[43] |
Sahoo S, Hucht A, Gruner M E, Rollmann G, Entel P, Postnikov A, Ferrer J, Fernández-Seivane L, Richter M, Fritsch D and Sil S 2010 emphPhys. Rev. B 82 054418
|
[44] |
Aldred A T 1966 emphJ. Appl. Phys. 37 1344
|
[45] |
Srisukhumbowornchai N and Guruswamy N 2001 emphJ. Appl. Phys. 90 5680
|
[46] |
Khmelevska T, Khmelevskyi S and Mohn P 2008 emphJ. Appl. Phys. 103 073911
|
[47] |
Hirshfeld F L 1977 emphTheor. Chim. Acta B 44 129
|
[48] |
Mulliken R S 1955 emphJ. Chem. Phys. 23 1833
|
[49] |
Guerra C F, Handgraaf J W, Baerends E J and Bickelhaupt F M 2004 emphJ. Comput. Chem. 25 189
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|