|
|
Influence of reagent vibration on the stereodynamics of the Li + HF → LiF + H reaction |
Li Shu-Juan(李淑娟)a), Shi Ying(石英)a)†, Xie Ting-Xian(解廷献)b), and Jin Ming-Xing(金明星)a) |
a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; b Department of Physics, Dalian Jiaotong University, Dalian 116028, China |
|
|
Abstract We investigate the influence of reagent vibration on the stereodynamics of the title reaction by the quasi-classical trajectory on the Aguado-Paniagua2-potential energy surface developed by Aguado et al. (J. Chem. Phys. 1997 106 1013). The cross sections and reaction probability as functions of the reagent vibration are calculated in the centre-of-mass frame. The product angular distributions of $p(\theta_{\rm r})$, $p(\phi_{\rm r})$, and $p(\theta_{\rm r}, \phi_{\rm r})$, which reflect the vector correlation, are also presented and discussed. The results indicate that the vector properties are sensitively affected by the vibrational excitation.
|
Received: 06 May 2011
Revised: 22 June 2011
Accepted manuscript online:
|
PACS:
|
34.50.Lf
|
(Chemical reactions)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: Project supported by Jilin University, China (Grant No. 419080106440), the Chinese National Fusion Project for ITER (Grant No. 2010GB104003), and the National Natural Science Foundation of China (Grant No. 10974069). |
Cite this article:
Li Shu-Juan(李淑娟), Shi Ying(石英), Xie Ting-Xian(解廷献), and Jin Ming-Xing(金明星) Influence of reagent vibration on the stereodynamics of the Li + HF → LiF + H reaction 2012 Chin. Phys. B 21 013401
|
[1] |
Wecka P F and Balakrishnan N 2005 J. Chem. Phys. 122 234310
|
[2] |
Becker C H, Casavecchia P, Tiedemann P W, Valentini J J and Lee Y T 1980 J. Chem. Phys. 73 2833
|
[3] |
Loesch H J and Stienkemeier F 1993 J. Chem. Phys. 98 9570
|
[4] |
Hobel O, Bobbenkamp R, Paladini A, Russo A and Loesch H J 2004 Phys. Chem. Chem. Phys. 6 2198
|
[5] |
Loesch H J and Stienkemeier F J 1993 Chem. Phys. 99 9598
|
[6] |
Noorbatcha I and Sathyamurthy N 1982 J. Am. Chem. Soc. 104 1766
|
[7] |
Noorbatcha I and Sathyamurthy N 1982 Chem. Phys. 76 6447
|
[8] |
Weck P F and Balakrishnan N 2005 J. Chem. Phys. 122 154309
|
[9] |
Lagana A, Bolloni A and Crocchianti S 2000 Phys. Chem. Chem. Phys. 2 535
|
[10] |
Aguado A, Paniagua M, Sanz C and Roncero O 2003 J. Chem. Phys. 119 10088
|
[11] |
Jasper A W, Hack M D, Chakraborty A, Truhlar D G and Piecuch P 2003 J. Chem. Phys. 116 8353
|
[12] |
Wecka P F and Balakrishnan N 2005 J. Chem. Phys. 122 154309
|
[13] |
Baer M, Last I and Loesch H J 1994 J. Chem. Phys. 101 9648
|
[14] |
Yuan H and Zhao G J 2010 Int. J. Quantum Chem. 110 1842
|
[15] |
Palmieri P and Laganà A 1989 J. Chem. Phys. 91 7303
|
[16] |
Aguado A, Paniagua M, Lara M and Roncero O 1997 J. Chem. Phys. 106 1013
|
[17] |
Aguado A, Paniagua M, Lara M and Roncero O 1997 J. Chem. Phys. 107 10085
|
[18] |
Truhlar D G and Muckerman J T 1979 A Guide for the Experimentalist (New York: Plenum Press) p. 505
|
[19] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[20] |
Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
|
[21] |
Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
[22] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[23] |
Zhao J, Xu Y, Yue D G and Meng Q T 2009 Chem. Phys. Lett. 471 160
|
[24] |
Zhu T, Hu G D, Chen J Z, Liu X G and Zhang Q G 2010 Chin. Phys. B 19 083402
|
[24] |
Liu Y F, Gao Y L, Shi D H and Sun J F 2009 Chem. Phys. 364 46
|
[25] |
Xu Y, Zhao J, Yue D G, Liu H, Zheng X J and Meng Q T 2009 Chin. Phys. B 18 5308
|
[26] |
Zhang C H, Zhang W Q and Chen M D 2009 J. Theor. Comput. Chem. 8 403
|
[27] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[28] |
Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
|
[29] |
Xu Y, Zhao J, Wang J, Liu F and Meng Q T 2010 Acta Phys. Sin. 59 3885 (in Chinese)
|
[30] |
Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
|
[31] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
[32] |
Zhao J and Luo Y 2011 Chin. Phys. B 20 043402
|
[33] |
Li W L, Wang M S, Yang C L, Liu W W, Sun C and Ren T Q 2007 Chem. Phys. 337 93
|
[34] |
Chu T S, Zhang H, Yuan S P, Fu A P, Si H Z, Tian F H and Duan Y B 2009 J. Phys. Chem. A 113 3470
|
[35] |
Wei Q, Li X and Li T 2010 Chem. Phys. 368 58
|
[36] |
Liu S L and Shi Y 2011 Chin. Phys. B 20 013404
|
[37] |
Alexander A J, Aoiz F J, Ba nares L, Brouard M and Simons J P 2000 Phys. Chem. Chem. Phys. 2 571
|
[38] |
Duan L H, Zhang W Q, Xu, X S, Cong S L and Chen M D 2009 Mol. Phys. 107 2579
|
[39] |
Yao L, Zhong H Y, Liu Y L and Xia W W 2009 Chem. Phys. 359 151
|
[40] |
Xu W W, Liu X G, Luan S H, Zhang Q G and Zhang P Y 2008 Chem. Phys. Lett. 464 92
|
[41] |
Yue X F, Cheng J, Li H, Zhang Y Q and Emilia L W 2010 Chin. Phys. B 19 043401
|
[42] |
Liu X G, Sun H Z, Liu H R and Zhang Q G 2010 Acta Phys. Sin. 59 7796 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|