Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 097503    DOI: 10.1088/1674-1056/20/9/097503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of Fe2+ substitution on magnetic and dielectric properties of CdCr2S4

Yan Li-Qin(闫丽琴)a)†, Sun Yang(孙阳) a), He Lun-Hua(何伦华)a), Wang Fang-Wei(王芳卫)a), and Shen Jun(沈俊) b)
a State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; b Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The magnetic and dielectric properties of polycrystalline Cd1 - xFexCr2S4 (0 ≤ x ≤ 0.9) are investigated. Upon substitution of Cd by Fe, the Curie temperature (TC) is increased while the saturation magnetization is decreased. A low doping level of Fe increases the permittivity, while a high doping level decreases the permittivity, which is explained by the internal barrier layer capacitor model. Kinks are observed in the temperature-dependent permittivity and loss tangent near TC for the samples with x= 0.5, 0.7, 0.9, implying the existence of the magnetodielectric effect. Furthermore, with the increase of Fe content, a decrease of anomaly deviation rate induced by internal molecular field is revealed in the permittivity, while an increase is observed for the loss tangent.
Keywords:  Cd1-xFexCr2S4      solid state reaction      magnetism      permittivity  
Received:  18 March 2011      Revised:  19 April 2011      Accepted manuscript online: 
PACS:  75.80.+q (Magnetomechanical effects, magnetostriction)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  75.50.Gg (Ferrimagnetics)  
  75.30.-m (Intrinsic properties of magnetically ordered materials)  

Cite this article: 

Yan Li-Qin(闫丽琴), Sun Yang(孙阳), He Lun-Hua(何伦华), Wang Fang-Wei(王芳卫), and Shen Jun(沈俊) Effects of Fe2+ substitution on magnetic and dielectric properties of CdCr2S4 2011 Chin. Phys. B 20 097503

[1] Fiebig M, Lottermoser T, Fröhlich D, Goltsev A V and Pisarev R V 2002 Nature 419 818
[2] Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M and Tokura Y 2003 Phys. Rev. B 67 180401(R)
[3] Yang C H, Koo T Y and Jeong Y H 2005 Sol. Sta. Commun. 134 299
[4] Goto T, Kimura T, Lawes G, Ramirez A P and Tokura Y 2004 Phys. Rev. Lett. 92 257201
[5] Freitas R S, Mitchel J F and Schiffer P 2005 Phys. Rev. B 72 144429
[6] Yang C H, Seidel J, Kim S Y, Rossen P B, Yu P, Gajek M, Chu Y H, Martin L W, Holcomb M B, He Q, Maksymovych P, Balke N, Kalinin S V, Baddorf A P, Basu S R, Scullin M L and Ramesh R 2009 Nature Mater. 8 485
[7] Choi T, Horibe Y, Yi H T, Choi Y J, Wu W and Cheong S W 2010 Nature Mater. 9 253
[8] Hill N A 2000 J. Phys. Chem. B 104 6694
[9] Catalan G 2006 Appl. Phys. Lett. 88 102902
[10] Huang Z J, Cao Y, Sun Y Y, Xue Y Y and Chu C W 1997 Phys. Rev. B 56 2623
[11] Hemberger J, Lunkenheimer P, Fichtl R, Weber S, Tsurkan V and Loidl A 2006 Phase Transit. 79 1065
[12] Weber S, Lunkenheimer P, Fichtl R, Hemberger J, Tsurkan V and Loidl A 2006 Phys. Rev. Lett. 96 157202
[13] Lehmann H W and Robbins M 1966 J. Appl. Phys. 37 1389
[14] Hemberger J, Lunkenheimer P, Fichtl R, Krug von Nidda H A, Tsurkan V and Loidl A 2005 Nature 434 364
[15] Lunkenheimer P, Fichtl R, Hemberger J, Tsurkan V and Loidl A 2005 Phys. Rev. B 72 060103(R)
[16] Yang Z, Bao X, Tan S and Zhang Y H 2004 Phys. Rev. B 69 144407
[17] Yan L Q, Sun Z H, Peng X D, Luo W J, He L H and Wang F W 2007 J. Phys. D: Appl. Phys. 40 3239
[18] Carvajal J R 2003 FULLPROF. Version 2.45. Institut Laue Langevin, Grenoble, France
[19] Krok-Kowalski J, Gro'n T, Warczewski J, Mydlarz T and Oko'nska-Kozowska I 1997 J. Magn. and Magn. Mater. 168 129
[20] Chen Z W, Tan S, Yang Z R and Zhang Y H 1999 Phys. Rev. B 59 11172
[21] Haack G and Beegle L C 1968 J. Appl. Phys. 39 656
[22] Jonscher A K, Meca F and Millany H M 1979 J. Phys. C: Sol. Sta.Phys. 12 L293
[23] Deori K L and Jonscher A K 1979 J. Phys. C: Sol. Sta. Phys. 12 L289
[24] Xu X F, Cao G H and Jiao Z K 2004 Phys. Lett. A 333 450
[25] Yang Z R, Tan S, Chen Z W and Zhang Y H 2000 Phys. Rev. B 62 13872
[26] Feng L X, Tang X M, Chen Y Z, Jiao Z K and Cao G H 2006 Phys. Stat. Sol. (a) 203 R22
[27] Garcia-Martin S, Morata-Orrantia A, Aguirre M H and Alario-Franco M A 2005 Appl. Phys. Lett. 86 043110
[28] Sinclair D C, Adams T B, Morrison F D and West A R 2002 Appl. Phys. Lett. 80 2153
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[4] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[5] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[6] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[7] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[8] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[9] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[10] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[11] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[12] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[13] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[14] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[15] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
No Suggested Reading articles found!