CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of Fe2+ substitution on magnetic and dielectric properties of CdCr2S4 |
Yan Li-Qin(闫丽琴)a)†, Sun Yang(孙阳) a), He Lun-Hua(何伦华)a), Wang Fang-Wei(王芳卫)a), and Shen Jun(沈俊) b) |
a State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; b Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The magnetic and dielectric properties of polycrystalline Cd1 - xFexCr2S4 (0 ≤ x ≤ 0.9) are investigated. Upon substitution of Cd by Fe, the Curie temperature (TC) is increased while the saturation magnetization is decreased. A low doping level of Fe increases the permittivity, while a high doping level decreases the permittivity, which is explained by the internal barrier layer capacitor model. Kinks are observed in the temperature-dependent permittivity and loss tangent near TC for the samples with x= 0.5, 0.7, 0.9, implying the existence of the magnetodielectric effect. Furthermore, with the increase of Fe content, a decrease of anomaly deviation rate induced by internal molecular field is revealed in the permittivity, while an increase is observed for the loss tangent.
|
Received: 18 March 2011
Revised: 19 April 2011
Accepted manuscript online:
|
PACS:
|
75.80.+q
|
(Magnetomechanical effects, magnetostriction)
|
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.30.-m
|
(Intrinsic properties of magnetically ordered materials)
|
|
Cite this article:
Yan Li-Qin(闫丽琴), Sun Yang(孙阳), He Lun-Hua(何伦华), Wang Fang-Wei(王芳卫), and Shen Jun(沈俊) Effects of Fe2+ substitution on magnetic and dielectric properties of CdCr2S4 2011 Chin. Phys. B 20 097503
|
[1] |
Fiebig M, Lottermoser T, Fröhlich D, Goltsev A V and Pisarev R V 2002 Nature 419 818
|
[2] |
Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M and Tokura Y 2003 Phys. Rev. B 67 180401(R)
|
[3] |
Yang C H, Koo T Y and Jeong Y H 2005 Sol. Sta. Commun. 134 299
|
[4] |
Goto T, Kimura T, Lawes G, Ramirez A P and Tokura Y 2004 Phys. Rev. Lett. 92 257201
|
[5] |
Freitas R S, Mitchel J F and Schiffer P 2005 Phys. Rev. B 72 144429
|
[6] |
Yang C H, Seidel J, Kim S Y, Rossen P B, Yu P, Gajek M, Chu Y H, Martin L W, Holcomb M B, He Q, Maksymovych P, Balke N, Kalinin S V, Baddorf A P, Basu S R, Scullin M L and Ramesh R 2009 Nature Mater. 8 485
|
[7] |
Choi T, Horibe Y, Yi H T, Choi Y J, Wu W and Cheong S W 2010 Nature Mater. 9 253
|
[8] |
Hill N A 2000 J. Phys. Chem. B 104 6694
|
[9] |
Catalan G 2006 Appl. Phys. Lett. 88 102902
|
[10] |
Huang Z J, Cao Y, Sun Y Y, Xue Y Y and Chu C W 1997 Phys. Rev. B 56 2623
|
[11] |
Hemberger J, Lunkenheimer P, Fichtl R, Weber S, Tsurkan V and Loidl A 2006 Phase Transit. 79 1065
|
[12] |
Weber S, Lunkenheimer P, Fichtl R, Hemberger J, Tsurkan V and Loidl A 2006 Phys. Rev. Lett. 96 157202
|
[13] |
Lehmann H W and Robbins M 1966 J. Appl. Phys. 37 1389
|
[14] |
Hemberger J, Lunkenheimer P, Fichtl R, Krug von Nidda H A, Tsurkan V and Loidl A 2005 Nature 434 364
|
[15] |
Lunkenheimer P, Fichtl R, Hemberger J, Tsurkan V and Loidl A 2005 Phys. Rev. B 72 060103(R)
|
[16] |
Yang Z, Bao X, Tan S and Zhang Y H 2004 Phys. Rev. B 69 144407
|
[17] |
Yan L Q, Sun Z H, Peng X D, Luo W J, He L H and Wang F W 2007 J. Phys. D: Appl. Phys. 40 3239
|
[18] |
Carvajal J R 2003 FULLPROF. Version 2.45. Institut Laue Langevin, Grenoble, France
|
[19] |
Krok-Kowalski J, Gro'n T, Warczewski J, Mydlarz T and Oko'nska-Kozowska I 1997 J. Magn. and Magn. Mater. 168 129
|
[20] |
Chen Z W, Tan S, Yang Z R and Zhang Y H 1999 Phys. Rev. B 59 11172
|
[21] |
Haack G and Beegle L C 1968 J. Appl. Phys. 39 656
|
[22] |
Jonscher A K, Meca F and Millany H M 1979 J. Phys. C: Sol. Sta.Phys. 12 L293
|
[23] |
Deori K L and Jonscher A K 1979 J. Phys. C: Sol. Sta. Phys. 12 L289
|
[24] |
Xu X F, Cao G H and Jiao Z K 2004 Phys. Lett. A 333 450
|
[25] |
Yang Z R, Tan S, Chen Z W and Zhang Y H 2000 Phys. Rev. B 62 13872
|
[26] |
Feng L X, Tang X M, Chen Y Z, Jiao Z K and Cao G H 2006 Phys. Stat. Sol. (a) 203 R22
|
[27] |
Garcia-Martin S, Morata-Orrantia A, Aguirre M H and Alario-Franco M A 2005 Appl. Phys. Lett. 86 043110
|
[28] |
Sinclair D C, Adams T B, Morrison F D and West A R 2002 Appl. Phys. Lett. 80 2153
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|