Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 097301    DOI: 10.1088/1674-1056/20/9/097301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The edges and terrace effect of Ag particles on optical resonance absorption property

Zhao Ya-Li(赵亚丽)a)†, Gui Ya-Qiang(桂亚强)a), Zhang Zhen-Lin(张振林)a), Ma Fu-Hua(马富花)a), Xu Xiao-Li(许晓丽)a), and Xu Xiao-Liang(许小亮)b)
a The 33rd Institute of Branch, China Electronics and Technology Corporation, Taiyuan 030006, China; b Structure Research Laboratory, University of Science and Technology of China, Hefei 230026, China
Abstract  Alternative Ag and SiO2 multilayers are prepared by using radio frequency magnetron sputtering. The Ag particles are found to diffuse toward and mostly accumulate near the surface of the Ag—SiO2 composite film via a rapid thermal treatment. Different shapes of the Ag particles are obtained by changing the thickness of each Ag and SiO2 layer. The response absorption property of the Ag composite film is also investigated. We relate the resonance absorption to the surface level and the Fermi level. To induce the obvious resonance absorption in an Ag composite film, it is necessary to maintain special shapes with sharp edges and wide terraces and to maintain the particle sizes ranging from 0 nm to 100 nm.
Keywords:  resonance absorption      edges and terrace      surface state      Fermi level  
Received:  10 March 2011      Revised:  29 April 2011      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  

Cite this article: 

Zhao Ya-Li(赵亚丽), Gui Ya-Qiang(桂亚强), Zhang Zhen-Lin(张振林), Ma Fu-Hua(马富花), Xu Xiao-Li(许晓丽), and Xu Xiao-Liang(许小亮) The edges and terrace effect of Ag particles on optical resonance absorption property 2011 Chin. Phys. B 20 097301

[1] Blanco L A and Garcia de Abajo F J 2004 Phys. Rev. B 69 205414
[2] Mandal S K, Roy R K and Pal A K 2002 J. Phys. D: Appl. Phys. 35 2198
[3] Xu H X, Aizpurua J, Apall P, Aizpurua J and Kall M 2000 Phys. Rev. E 62 4318
[4] Shi Y L, Zhou Q L and Zhang C L 2009 Chin. Phys. B 18 5518
[5] Liu Z X, Wang H H and Li H 1998 Appl. Phys. Lett. 72 1861
[6] Yang L, Li G H and Zhang L D 2000 Appl. Phys. Lett. 76 1537
[7] Liu L J, Yue Y Z and Hao Y 2009 Acta Phys. Sin. 58 536 (in Chinese)
[8] Huang Q, Zhang X D and Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese)
[9] Roy R K, Mandal S K, Bhattacharyya D and Pal A K 2003 Eur. Phys. J. B 34 25
[10] Camelio S, Toudert J, Babonneau D and Girarrdeau T 2005 Appl. Phys. B 80 89
[11] Camelio S, Babonneau D, Giradeau T, Toudert J, Lignou F, Denanot M F, Maitre N, Barranco A and Guerin P 2003 Appl. Opt. 42 674
[12] Zhao Y L, G F, Wang Z B, Ming H and Xu X L 2007 Acta Phys. Sin. 56 3564 (in Chinese)
[13] Giesen M, Schulze Lcking-Konert G and Ibach H 1999 Phys. Rev. Lett. 82 3101
[14] Garcia-Vidal F J and Pendry J B 1996 Phys. Rev. Lett. 77 1163
[15] Wang G H 2003 Cluster Physics (Shanghai: Shanghai Scientific and Technical Publishers) p. 87 (in Chinese)
[16] Xie X D and Lu D 1998 Energy Band Theory of Solids (Shanghai: Fudan University Press) p. 200 (in Chinese)
[17] Xiong X, Song C L and Zhong Y L 1985 Surface Physics (Shenyang: Liaoning Science and Technology Publishing House) p. 76 (in Chinese)
[18] Hasegawa Y and Avouris Ph 1993 Phys. Rev. Lett. 71 1071
[19] Garcia N and Serena A P 1995 Surf. Sci. 330 665
[1] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[2] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[3] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[4] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[5] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[6] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[7] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[8] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[9] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[10] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[11] Measurement of the bulk and surface bands in Dirac line-node semimetal ZrSiS
Guang-Hao Hong(洪光昊), Cheng-Wei Wang(王成玮), Juan Jiang(姜娟), Cheng Chen(陈成), Sheng-Tao Cui(崔胜涛), Hai-Feng Yang(杨海峰), Ai-Ji Liang(梁爱基), Shuai Liu(刘帅), Yang-Yang Lv(吕洋洋), Jian Zhou(周健), Yan-Bin Chen(陈延彬), Shu-Hua Yao(姚淑华), Ming-Hui Lu(卢明辉), Yan-Feng Chen(陈延峰), Mei-Xiao Wang(王美晓), Le-Xian Yang(杨乐仙), Zhong-Kai Liu(柳仲楷), Yu-Lin Chen(陈宇林). Chin. Phys. B, 2018, 27(1): 017105.
[12] Quantum oscillations and nontrivial transport in (Bi0.92In0.08)2Se3
Minhao Zhang(张敏昊), Yan Li(李焱), Fengqi Song(宋凤麒), Xuefeng Wang(王学锋), Rong Zhang(张荣). Chin. Phys. B, 2017, 26(12): 127305.
[13] Impurity effect on surface states of Bi (111) ultrathin films
Kai Zhu(朱凯), Dai Tian(田岱), Lin Wu(伍琳), Jianli Xu(许建丽), Xiaofeng Jin(金晓峰). Chin. Phys. B, 2016, 25(8): 087303.
[14] Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy
Aiji Liang(梁爱基), Chaoyu Chen(陈朝宇), Zhijun Wang(王志俊), Youguo Shi(石友国), Ya Feng(冯娅), Hemian Yi(伊合绵), Zhuojin Xie(谢卓晋), Shaolong He(何少龙), Junfeng He(何俊峰), Yingying Peng(彭莹莹), Yan Liu(刘艳), Defa Liu(刘德发), Cheng Hu(胡成), Lin Zhao(赵林), Guodong Liu(刘国东), Xiaoli Dong(董晓莉), Jun Zhang(张君), M Nakatake, H Iwasawa, K Shimada, M Arita, H Namatame, M Taniguchi, Zuyan Xu(许祖彦), Chuangtian Chen(陈创天), Hongming Weng(翁红明), Xi Dai(戴希), Zhong Fang(方忠), Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2016, 25(7): 077101.
[15] Influence of surface states on deep level transient spectroscopy in AlGaN/GaN heterostructure
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Wei-Wei Chen(陈伟伟), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Li-Xiang Chen(陈丽香), Yan-Rong Cao(曹艳荣), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(6): 067305.
No Suggested Reading articles found!