Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 094211    DOI: 10.1088/1674-1056/20/9/094211
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Photoluminescence and persistent luminescence properties of non-doped and Ti4+-doped Mg2SnO4 phosphors

Zhang Jia-Chi(张加驰), Qin Qing-Song(秦青松), Yu Ming-Hui(于明汇), Zhou Hong-Liang(周宏亮), and Zhou Mei-Jiao(周美娇)
Key Laboratory for Magnetism and Magnetic Materials, Ministry of Education, Lanzhou University, Lanzhou 730000, China
Abstract  Mg2SnO4 exhibits green photoluminescence and persistent luminescence, which originate from oxygen vacancies. When Ti4+ions were doped, an interesting Mg2SnO4:Ti4+ phosphor with bluish white photoluminescence under ultraviolet irradiation and with green persistent luminescence was first obtained. Our investigation reveals that two emission centres exist in Mg2SnO4:Ti4+. The centres responsible for the green emission are considered to be the F centres (oxygen vacancies) and the blue centres are the TiO6 complex. Trap clusters in the band gap with different depths, such as [SnMg—Oi], [SnMg—VO·], [SnMg—VO×] and MgSn, correspond to the components at 85 ℃, 146 ℃ and 213 ℃ of the thermoluminescence curve.
Keywords:  phosphor      Mg2SnO4      persistent luminescence      photoluminescence  
Received:  02 March 2011      Revised:  30 April 2011      Accepted manuscript online: 
PACS:  42.70.-a (Optical materials)  

Cite this article: 

Zhang Jia-Chi(张加驰), Qin Qing-Song(秦青松), Yu Ming-Hui(于明汇), Zhou Hong-Liang(周宏亮), and Zhou Mei-Jiao(周美娇) Photoluminescence and persistent luminescence properties of non-doped and Ti4+-doped Mg2SnO4 phosphors 2011 Chin. Phys. B 20 094211

[1] Jiang Z Q, Wang Y H and Gong Y 2010 Chin. Phys. B 19 027801
[2] Huang P, Cui C E and Wang S 2009 Chin. Phys. B 18 4524
[3] Qiu J, Miura K, Inouye H, Fujiwara S, Mitsuyu T and Hirao K 1999 J. Non-Cryst. Solids 244 185
[4] Matsuzawa T, Aoki Y, Takeuchi N and Murayama Y 1996 J. Electrochem. Soc. 143 2670
[5] Lin Y, Tang Z, Zhang Z and Nan C 2003 J. Eur. Ceram. Soc. 23 175
[6] Wang M, Wang D and Lu G 1998 Mater. Sci. Eng. B 57 18
[7] Chen Y C, Chang Y H and Tsai B S 2004 Mater. Trans. 45 1684
[8] Kim K N, Jung H K, Park H D and Kim D 2002 J. Lumin. 99 169
[9] Popp R C 1991 Luminescence and the Solid State (Amsterdam: Elsevier) p. 291
[10] Goodnenough J B and Loeb A L 1955 Phys. Rev. 98 39
[11] Verwey E J W and Heilmann E L 1947 J. Chem. Phys. 15 174
[12] Schweizer S 2001 Phys. Status. Solidi. A 187 335
[13] Hölsä J, Jungner H, Lastusaari M and Niittykoski J 2001 J. Alloys. Compd. 323 326
[14] Trojan-Piegza J, Niittykoski J, Hölsä J and Zych E 2008 Chem. Mater. 20 2252
[15] Macke A J H and Blasse G 1976 J. Inorg. Nucl. Chem. 38 1407
[16] Yan H, He R, Pham J and Yang P 2003 Adv. Mater. 15 402
[17] Hu J Q, Bando Y and Golberg D 2003 Chem. Phys. Lett. 372 758
[18] Li Y B, Bando Y, Sato T and Kurashima K 2002 Appl. Phys. Lett. 81 144
[19] Emeline A V, Kataeva G V, Ryabchuk V K and Serpone N 1999 J. Phys. Chem. B 103 9190
[20] Mitchell T E 1999 J. Am. Ceram. Soc. 12 3305
[21] Jia D and Yen W M 2003 J. Lumin. 101 115
[22] Zhang J C, Wang Y H, Zhang Z Y, Wang Z L and Liu B 2008 Mater. Lett. 62 202
[23] Yamashita T and Ueda K 2007 J. Solid State Chem. 180 1410
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[4] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[5] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[8] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[9] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[10] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[11] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[12] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[13] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[14] Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide
Tao Huang(黄韬), Yuan Si(思源), Hong-Yu Wu(吴宏宇), Li-Xin Xia(夏立新), Yu Lan(蓝郁), Wei-Qing Huang(黄维清), Wang-Yu Hu(胡望宇), and Gui-Fang Huang(黄桂芳). Chin. Phys. B, 2021, 30(2): 027101.
[15] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
No Suggested Reading articles found!