Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 094207    DOI: 10.1088/1674-1056/20/9/094207
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Intersubband transitions in Al0.82In0.18N/GaN single quantum well

Wang Yu-Zhou(王宇宙), Li Ding(李丁), Li Lei(李磊),Liu Ning-Yang(刘宁炀), Liu Lei(刘磊),Cao Wen-Yu(曹文彧), Chen Wei-Hua(陈伟华), and Hu Xiao-Dong(胡晓东)
State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
Abstract  The influence of the width of a lattice-matched Al0.82In0.18N/GaN single quantum well (SQW) on the absorption coefficients and wavelength of the intersubband transition (ISBT) has been investigated by solving the Schrödinger and Poisson equations self-consistently. The wavelength of 1—2 ISBT increases with L, the thickness of the single quantum well, ranging from 2.88 μm to 3.59 μm. The absorption coefficients of 1—2 ISBT increase with L at first and then decrease with L, with a maximum when L is equal to 2.6 nm. The wavelength of 1—3 ISBT decreases with L at first and then increases with L, with a minimum when L is equal to 4 nm, ranging from approximately 2.03 μm to near 2.11 μm. The absorption coefficients of 1—3 ISBT decrease with L. The results indicate that mid-infrared can be realized by the Al0.82In0.18N/GaN SQW. In addition, the wavelength and absorption coefficients of ISBT can be adjusted by changing the width of the SQW.
Keywords:  Al0.82In0.18N/GaN single quantum well      optoelectronic devices      mid-infrared      intersubband transition  
Received:  06 September 2010      Revised:  19 April 2011      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  78.30.Fs (III-V and II-VI semiconductors)  
  42.70.Km (Infrared transmitting materials)  
  68.65.Fg (Quantum wells)  

Cite this article: 

Wang Yu-Zhou(王宇宙), Li Ding(李丁), Li Lei(李磊),Liu Ning-Yang(刘宁炀), Liu Lei(刘磊),Cao Wen-Yu(曹文彧), Chen Wei-Hua(陈伟华), and Hu Xiao-Dong(胡晓东) Intersubband transitions in Al0.82In0.18N/GaN single quantum well 2011 Chin. Phys. B 20 094207

[1] Lei S Y, Shen B and Zhang G Y 2008 Acta Phys. Sin. 57 2386 (in Chinese)
[2] He Z, Kang Y, Tang Y W, Li X and Fang J X 2006 Chin. Phys. 15 1325
[3] Liu Z, Wang X L, Wang J X, Hu G X, Guo L C and Li J M 2007 it Chin. Phys. 16 1467
[4] Radovanovic J, Milanovic V, Indjin D and Ikonic Z 2002 J. Appl. Phys. 92 7672
[5] Gmachl C, Frolov S V, Ng H M, Chu S N G and Cho A Y 2001 it Electron. Lett. 37 378
[6] Suzuki N and Iizuka N 1999 Jpn. J. Appl. Phys. Part 1 bf36 3222
[7] Gmachl C, Ng H M and Cho A Y 2000 Appl. Phys. Lett. bf 77 334
[8] Suzuki N and Iizuka N 1997 Jpn. J. Appl. Phys. Part 2 bf36 L1006
[9] Helman A, Tchernycheva M, Lusson A, Warde E, Julien F H, Moumanis Kh, Fishman G, Monroy E, Daudin B, Le D, Dang Si, Bellet-Amalric E and Jalabert D 2003 Appl. Phys. Lett. 83 5196
[10] Kishino K, Kikuchi A, Knatawa H and Tachibana T 2002 Appl. Phys. Lett. 81 1234
[11] Nicolay S, Carlin J F, Feltin E, Butt'e R, Mosca M, Grandjean N, Llegems M, Tchernycheva M, Nevou L and Julien F H 2005 Appl. Physics. Lett. 87 111106
[12] Ahn D and Chuang S L 1987 J. Quantum Electron. 23 2196
[13] Huang Y M and Lien C H 1995 J. Appl. Phys. 77 3433
[14] Cen L B, Shen B, Qin Z X and Zhang G Y 2009 Chin. Phys. B 18 3905
[15] Brey L, Dempsey J, Johnson N F and Halperin B I 1990 Phys. Rev. B 42 1240
[16] Cen L B, Shen B, Qin Z X and Zhang G Y 2009 J. Appl. Phys. Lett. 105 053106
[17] Manasreh M O, Szmulowicz F, Vaughan T, Evans K R, Stutz C E and Fischer D W 1991 Phys. Rev. B 13 9996
[18] Ando T 1977 Solid State Commun. bf21 133
[19] Carlin J F, Zellweger C, Dorsaz J, Nicolay S, Chrismann G, Feltin E, Butt'e R and Grandjean N 2005 Phys. Status Solidi B 242 2326
[20] Hedin L and Lundqvist B I 1971 J. Phy. C 4 2064
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[3] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[4] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[5] Ultrabroadband mid-infrared emission from Cr2+:ZnSe-doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching
Ke-Lun Xia(夏克伦), Guang Jia(贾光), Hao-Tian Gan(甘浩天), Yi-Ming Gui(桂一鸣), Xu-Sheng Zhang(张徐生), Zi-Jun Liu(刘自军), and Xiang Shen(沈祥). Chin. Phys. B, 2021, 30(9): 094208.
[6] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[7] Negative photoconductivity in low-dimensional materials
Boyao Cui(崔博垚), Yanhui Xing(邢艳辉), Jun Han(韩军), Weiming Lv(吕伟明), Wenxing Lv(吕文星), Ting Lei(雷挺), Yao Zhang(张尧), Haixin Ma(马海鑫), Zhongming Zeng(曾中明), and Baoshun Zhang(张宝顺). Chin. Phys. B, 2021, 30(2): 028507.
[8] Enhancing light absorption for organic solar cells using front ITO nanograting and back ultrathin Al layer
Li Zhang(张力), Wei-Ning Liu(刘卫宁), Yan-Zhou Wang(王艳周), Qi-Ming Liu(刘奇明), Jun-Shuai Li(栗军帅), Ya-Li Li(李亚丽), and De-Yan He(贺德衍). Chin. Phys. B, 2021, 30(10): 104207.
[9] Recent progress in optoelectronic neuromorphic devices
Yan-Bo Guo(郭延博), Li-Qiang Zhu(竺立强). Chin. Phys. B, 2020, 29(7): 078502.
[10] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[11] Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber
Hua Chen(陈华), Ke-Lun Xia(夏克伦), Zi-Jun Liu(刘自军), Xun-Si Wang(王训四), Xiang-Hua Zhang(章向华), Yin-Sheng Xu(许银生), Shi-Xun Dai(戴世勋). Chin. Phys. B, 2019, 28(2): 024209.
[12] High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars
Sheng-Wen Xie(谢圣文), Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Yi Zhang(张一), Jin-Ming Shang(尚金铭), Fu-Hui Shao(邵福会), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(1): 014208.
[13] Magneto optics and time resolved terahertz spectrocopy
T Dong(董涛), Z G Chen(谌志国), N L Wang(王楠林). Chin. Phys. B, 2018, 27(7): 077501.
[14] Mid-infrared luminescence of Dy3+-doped Ga2S3-Sb2S3-CsI chalcohalide glasses
Anping Yang(杨安平), Jiahua Qiu(邱嘉桦), Mingjie Zhang(张鸣杰), Mingyang Sun(孙明阳), Zhiyong Yang(杨志勇). Chin. Phys. B, 2018, 27(7): 077105.
[15] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
No Suggested Reading articles found!