CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
A low-threshold and high-power oxide-confined 850-nm AlInGaAs strained quantum-well vertical-cavity surface-emitting laser |
Guan Bao-Lu(关宝璐), Ren Xiu-Juan(任秀娟), Li Chuan(李川), Li Shuo(李硕), Shi Guo-Zhu(史国柱), and Guo Xia(郭霞)† |
Opto-electronic Devices Research Laboratory, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract A low-threshold and high-power oxide-confined 850-nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting laser (VCSEL) based on an intra-cavity contacted structure is fabricated. A threshold current of 1.5 mA for a 22 μm oxide aperture device is achieved, which corresponds to a threshold current density of 0.395 kA/cm2. The peak output optical power reaches 17.5 mW at an injection current of 30 mA at room temperature under pulsed operation. While under continuous-wave (CW) operation, the maximum power attains 10.5 mW. Such a device demonstrates a high characteristic temperature of 327 K within a temperature range from -12℃ to 96℃ and good reliability under a lifetime test. There is almost no decrease of the optical power when the device operates at a current of 5 mA at room temperature under the CW injection current.
|
Received: 14 February 2011
Revised: 22 April 2011
Accepted manuscript online:
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.60.By
|
(Design of specific laser systems)
|
|
42.72.Ai
|
(Infrared sources)
|
|
Cite this article:
Guan Bao-Lu(关宝璐), Ren Xiu-Juan(任秀娟), Li Chuan(李川), Li Shuo(李硕), Shi Guo-Zhu(史国柱), and Guo Xia(郭霞) A low-threshold and high-power oxide-confined 850-nm AlInGaAs strained quantum-well vertical-cavity surface-emitting laser 2011 Chin. Phys. B 20 094206
|
[1] |
Westbergh P, Gustavsson S J, Haglund A, Mats S, Andrew J and Larsson A 2009 IEEE J. Sel. Top. Quantum Electron 15 694
|
[2] |
Shi J W, Weng W C, Kuo F M, Yang Y J, Pinches S, Geen M and Joel A 2010 IEEE Photon. J. 2 960
|
[3] |
Ding Y, Fan W J, Xu D W, Tong C Z, Liu Y and Zhao L J 2010 Appl. Phys. B 98 773
|
[4] |
Yang H, Guo X, Guan B L, Wang T X and Shen G D 2008 Acta Phys. Sin. 57 2959 (in Chinese)
|
[5] |
Chen M, Guo X, Guan B L, Deng J, Dong L M and Shen G D 2006 Acta Phys. Sin. 55 5842 (in Chinese)
|
[6] |
Sarzala R P 2007 Semicond. Sci. Tech. 22 113
|
[7] |
Lin C K and MacDoiuga M H 1997 IEEE Digest of the IEEE/LEOS Summer Topical Meetings August 11—15, 1997, Montreal, Canada, pp. 11—15
|
[8] |
Vez D, Hunziker S G, Kohler R, Royo P and Moser M 2004 Electro. Lett. 40 1210
|
[9] |
Dang G T, Mehandru R, Luo B, Ren F, Hobson W S, Lopata J, Tayahi M, Chu S N G, Pearton S J, Chang W and Shen H 2003 J. Lightw. Technol. 21 1020
|
[10] |
Coldren L A, Hegblom E, Strzelecka E, Ko J, Akulova Y and Thibeault B 1997 Proc. SPIE 3003 2
|
[11] |
Grabherr M, Miller M, Jager R, Wiedenmann D and King R 2004 Proc. SPIE 5364 174
|
[12] |
Su S T, Tang S F, Chen T C, Chiang C D, Yang S T and Su W K 2006 Proc. SPIE 6132 61320L-1
|
[13] |
Huffaker D L, Graham L A, Deng H and Deppe D G 1996 IEEE Photon. Technol. Lett. 8 974
|
[14] |
Osin'ski M, Svimonishvili T, Smolyakov G A, Smagley V A, Mac'kowiak P and Nakwaski W 2001 IEEE Photon. Technol. Lett. 13 687
|
[15] |
Hvisc S, Harris Jr J and Solomon G 1998 National Nanofabrication Users Network pp. 60—61
|
[16] |
Ochiai M, Giudice G E, Temkin H, Scott J W and Cockerill T M 1996 Appl. Phys. Lett. 68 1898
|
[17] |
Lai F I, Hsueh T H, Chang Ya-hsien, Shu W C, Lai L H, Kuo H C and Wang S C 2003 Solid-State Electron. 47 1805
|
[18] |
Mutig A, Lott J A, Blokhin S A, Wolf P, Moser P, Hofmann W, Nadtochiy A W, Payusov A and Bimberg D 2010 Appl. Phys. Lett. 97 151101
|
[19] |
Sadofev C J, Blumstengel S, Puls S and Henneberger J F 2006 Appl. Phys. Lett. 89 051108
|
[20] |
Soibel, Mansour A, Qiu K, Hill Y, Yang C J and Rui Q 2009 J. Appl. Phys. 101 093104
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|