Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 088902    DOI: 10.1088/1674-1056/20/8/088902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A new lattice hydrodynamic traffic flow model with a consideration of multi-anticipation effect

Tian Chuan(田川)a)†, Sun Di-Hua(孙棣华) a), and Yang Shu-Hong(阳树洪)b)
a College of Automation, Chongqing University, Chongqing 400030, China; b College of Computer, Chongqing University, Chongqing 400030, China
Abstract  We present a new multi-anticipation lattice hydrodynamic model based on the traffic anticipation effect in the real world. Applying the linear stability theory, we obtain the linear stability condition of the model. Through nonlinear analysis, we derive the modified Korteweg-de Vries equation to describe the propagating behaviour of a traffic density wave near the critical point. The good agreement between the simulation results and the analytical results shows that the stability of traffic flow can be enhanced when the multi-anticipation effect is considered.
Keywords:  traffic flow      lattice hydrodynamic model      simulation  
Received:  09 December 2010      Revised:  25 February 2011      Accepted manuscript online: 
PACS:  89.40.-a (Transportation)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  05.70.Fh (Phase transitions: general studies)  
Fund: Project supported by the National High Technology and Development Program of China (Grant No. 511-0910-1031) and Doctoral Fund of Ministry of Education of China (Grant No. 20090191110022).

Cite this article: 

Tian Chuan(田川), Sun Di-Hua(孙棣华), and Yang Shu-Hong(阳树洪) A new lattice hydrodynamic traffic flow model with a consideration of multi-anticipation effect 2011 Chin. Phys. B 20 088902

[1] Peng G H, Sun D H and He H P 2008 Acta Phys. Sin. 57 7541 (in Chinese)
[2] Tang T Q, Huang H J, Wong S C and Jiang R 2009 Chin. Phys. B 18 975
[3] Mo Y L, He H D, Xue Y, Shi W and Lu W Z 2008 Chin. Phys. B 17 4446
[4] Sun D H and Peng G H 2009 Chin. Phys. B 18 3724
[5] Li X L, Kuang H, Song T, Dai S Q and Li Z P 2008 Chin. Phys. B 17 2366
[6] Ge H X, Zhu H B and Dai S Q 2005 Acta Phys. Sin. 54 4621 (in Chinese)
[7] Chen X, Gao Z Y, Zhao X M and Jia B 2007 Acta Phys. Sin. 56 2024 (in Chinese)
[8] Peng G H, Sun D H and He H P 2009 Chin. Phys. B 18 468
[9] Ge H X, Dai S Q and Dong L Y 2008 Chin. Phys. B 17 23
[10] Nagatani T 1998 Physica A 261 599
[11] Li Z P, Li X L and Liu F Q 2008 Int. J. Mod. Phys. C 19 1163
[12] Xue Y 2004 Acta Phys. Sin. 53 25 (in Chinese)
[13] Ge H X, Dai S D, Xue Y and Dong L Y 2005 Phys. Rev. E 71 66119
[14] Tian J F and Jia B 2010 Chin. Phys. B 19 040303
[15] Sun D H, Tian C and Liu W N 2010 Chin. Phys. B 19 080514
[16] Peng G H 2010 Acta Phys. Sin. 59 3824 (in Chinese)
[17] Tang T Q, Huang H J and Xue Y 2006 Acta Phys. Sin. 55 4026 (in Chinese)
[18] Kerner B S and Konhauser P 1993 Phys. Rev. E 48 2335
[19] Ge H X, Cheng R J and Lei L 2010 Physica A 389 2825
[20] Ge H X, Cheng R J and Dai S Q 2005 Physica A 357 466
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[7] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[8] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[9] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[10] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[11] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[12] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[13] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[14] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[15] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
No Suggested Reading articles found!