Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 076101    DOI: 10.1088/1674-1056/20/7/076101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Luminescence properties of InxGa1 - xN (x ~ 0.04) films grown by metal organic vapour phase epitaxy

Zhao Wei(赵维), Wang Lai(汪莱), Wang Jia-Xing(王嘉星), and Luo Yi(罗毅)
State Key Laboratory on Integrated Optoelectronics, and Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Abstract  InxGa1 - xN (x ~ 0.04) films are grown by metal organic vapour phase epitaxy. For the samples grown on GaN directly, the relaxation of InGaN happens when its thickness is beyond a critical value. A broad band is observed in the luminescence spectrum, and its intensity increases with the increasing degree of relaxation. Secondary ion mass spectrometry measurement rules out the possibility of the broad band originating from impurities in InGaN. The combination of the energy-dispersive X-ray spectra and the cathodeluminescence measurements shows that the origin of the broad band is attributed to the indium composition inhomogeneity caused by the phase separation effect. The measurement results of the tensile-strained sample further demonstrate the conclusions.
Keywords:  InGaN      phase separation      composition inhomogeneity  
Received:  09 October 2010      Revised:  09 March 2011      Accepted manuscript online: 
PACS:  61.05.cp (X-ray diffraction)  
  64.75.Qr (Phase separation and segregation in semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
  81.05.Ea (III-V semiconductors)  

Cite this article: 

Zhao Wei(赵维), Wang Lai(汪莱), Wang Jia-Xing(王嘉星), and Luo Yi(罗毅) Luminescence properties of InxGa1 - xN (x ~ 0.04) films grown by metal organic vapour phase epitaxy 2011 Chin. Phys. B 20 076101

[1] Hsu L and Walukiewicz W 2008 J. Appl. Phys. 104 024507
[2] Neufeld C J, Toledo N G, Cruz S C, Iza M, DenBaars S P and Mishra U K 2008 Appl. Phys. Lett. 93 143502
[3] Chuah L S, Hassan Z and Hassan H A 2008 Microelectron. Int. 25 3
[4] Ohsawa J, Kozawa T, Ishiguro O and Kachi T 2008 Phys. Status Solidi A 205 1699
[5] Kar A, Alexson D, Dutta M and Stroscio M A 2008 J. Appl. Phys. 104 073502
[6] Park J, Baik S, Ko D, Park S, Yoon E and Kim Y 2009 J. Electron. Mater. 38 518
[7] Scholz F, Sohmer A, Off J, Syganow V, Dörnen A, Im J S, Hangleiter A and Lakner H 1997 Mater. Sci. Eng. B 50 238
[8] Liu N X, Wang H B, Liu J P, Niu N H, Zhang N G, Li T, Xing Y H, Han J, Guo X and Shen G D 2006 Acta Phys. Sin. 55 4951 (in Chinese)
[9] Poblenz C, Mates T, Craven M, DenBaars S and Speck J S 2002 Appl. Phys. Lett. 81 2767
[10] Yiota ldiota z A, öztürk M K, Bosi M, özccelik S and Kasap M 2009 Chin. Phys. B 18 4007
[11] Na H, Takado S, Sawada S, Kurouchi M, Akagi T, Naoi H, Araki T and Nanishi Y 2007 J. Cryst. Growth 300 177
[12] Yamasaki S, Asami S, Shibata N, Koike M, Manabe K, Tanaka T, Amano H and Akasaki I 1995 Appl. Phys. Lett. 66 1112
[13] Guo X, Wang H, Jiang D S, Wang Y T, Zhao D G, Zhu J J, Liu Z S, Zhang S M and Yang H 2010 Chin. Phys. B 19 106802
[14] Leyer M, Stellmach J, Meissner C, Pristovsek M and Kneissl M 2008 J. Cryst. Growth 310 4913
[15] Schuster M, Gervais P O, Jobst B, Hösler W, Averbeck R, Riechert H, Iberl A and Stömmer R 1999 J. Phys. D: Appl. Phys. 32 A56
[16] Pereira S, Correia M R, Pereira E, O'Donnell K P, Trager-Cowan C, Sweeney F and Alves E 2004 Phys. Rev. B 64 205311
[17] Stringfellow G B 2010 J. Cryst. Growth 312 735
[18] Parker C A, Roberts J C, Bedair S M, Reed M J, Liu S X and El-Masry N A 1999 Appl. Phys. Lett. 75 2776
[19] Jmerik V N, Mizerov A M, Shubina T V, Yagovkina, Listoshin V B, Sitnikova A A, Ivanov S V, Kim M H, Koike M and Kim B J 2007 J. Cryst. Growth 301 469
[20] Han B, Ulmer M P and Wessels B W 2004 J. Electron. Mater. 33 431
[21] Reshchikov M A and Morkocc H 2005 J. Appl. Phys. 97 061301
[22] Oila J, Saarinen K, Wickenden A E, Koleske D D, Henry R L and Twigg M E 2003 Appl. Phys. Lett. 82 1021
[23] van de Walle C G, Neugebauer J, Stampfl C, McCluskey M D and Johnson N M 1999 Acta Phys. Pol. A 96 613
[24] van de Walle C G 1997 Phys. Rev. B 56 R10020
[25] Wright A F 2002 J. Appl. Phys. 92 2575
[26] Mireles F and Ulloa S E 1998 Phys. Rev. B 58 3879.
[27] Toth M, Fleischer K and Phillips M R 1999 Phys. Rev. B 59 1575
[28] Koleske D D, Wickenden A E, Henry R L and Twigg M E 2002 J. Cryst. Growth 242 55
[29] Bradley S T, Goss S H, Brillson L J, Hwang J and Schaff W J 2003 J. Vac. Sci. Technol. 21 2558.
[30] Nakajima K, Ujihara T, Miyashita S and Sazaki G 2001 J. Appl. Phys. 89 146
[31] Tsai W C, Lin H, Ke W C, Chang W H, Chou W C, Chen W K and Lee M C 2007 Nanotechnology 18 405305
[32] Ho I and Stringfellow G B 1996 Appl. Phys. Lett. 69 2701
[33] Ganchenkova M G, Borodin V A, Laaksonen K and Nieminen R M 2008 Phys. Rev. B 77 075207
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[3] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[4] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[5] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[6] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[7] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[8] Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate
Yuan-Hao He(何元浩), Wei Mao(毛维), Ming Du(杜鸣), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 058501.
[9] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[10] A MOVPE method for improving InGaN growth quality by pre-introducing TMIn
Zi-Kun Cao(曹子坤), De-Gang Zhao(赵德刚), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Feng Liang(梁锋), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2021, 30(1): 018103.
[11] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[12] Phase separation and super diffusion of binary mixtures ofactive and passive particles
Yan Wang(王艳), Zhuanglin Shen(谌庄琳), Yiqi Xia(夏益祺), Guoqiang Feng(冯国强), Wende Tian(田文得). Chin. Phys. B, 2020, 29(5): 053103.
[13] Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection
Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Zhi-Jue Quan(全知觉), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047802.
[14] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[15] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
No Suggested Reading articles found!