CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Luminescence properties of InxGa1 - xN (x ~ 0.04) films grown by metal organic vapour phase epitaxy |
Zhao Wei(赵维), Wang Lai(汪莱)†, Wang Jia-Xing(王嘉星), and Luo Yi(罗毅) |
State Key Laboratory on Integrated Optoelectronics, and Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract InxGa1 - xN (x ~ 0.04) films are grown by metal organic vapour phase epitaxy. For the samples grown on GaN directly, the relaxation of InGaN happens when its thickness is beyond a critical value. A broad band is observed in the luminescence spectrum, and its intensity increases with the increasing degree of relaxation. Secondary ion mass spectrometry measurement rules out the possibility of the broad band originating from impurities in InGaN. The combination of the energy-dispersive X-ray spectra and the cathodeluminescence measurements shows that the origin of the broad band is attributed to the indium composition inhomogeneity caused by the phase separation effect. The measurement results of the tensile-strained sample further demonstrate the conclusions.
|
Received: 09 October 2010
Revised: 09 March 2011
Accepted manuscript online:
|
PACS:
|
61.05.cp
|
(X-ray diffraction)
|
|
64.75.Qr
|
(Phase separation and segregation in semiconductors)
|
|
78.30.Fs
|
(III-V and II-VI semiconductors)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
Cite this article:
Zhao Wei(赵维), Wang Lai(汪莱), Wang Jia-Xing(王嘉星), and Luo Yi(罗毅) Luminescence properties of InxGa1 - xN (x ~ 0.04) films grown by metal organic vapour phase epitaxy 2011 Chin. Phys. B 20 076101
|
[1] |
Hsu L and Walukiewicz W 2008 J. Appl. Phys. 104 024507
|
[2] |
Neufeld C J, Toledo N G, Cruz S C, Iza M, DenBaars S P and Mishra U K 2008 Appl. Phys. Lett. 93 143502
|
[3] |
Chuah L S, Hassan Z and Hassan H A 2008 Microelectron. Int. 25 3
|
[4] |
Ohsawa J, Kozawa T, Ishiguro O and Kachi T 2008 Phys. Status Solidi A 205 1699
|
[5] |
Kar A, Alexson D, Dutta M and Stroscio M A 2008 J. Appl. Phys. 104 073502
|
[6] |
Park J, Baik S, Ko D, Park S, Yoon E and Kim Y 2009 J. Electron. Mater. 38 518
|
[7] |
Scholz F, Sohmer A, Off J, Syganow V, Dörnen A, Im J S, Hangleiter A and Lakner H 1997 Mater. Sci. Eng. B 50 238
|
[8] |
Liu N X, Wang H B, Liu J P, Niu N H, Zhang N G, Li T, Xing Y H, Han J, Guo X and Shen G D 2006 Acta Phys. Sin. 55 4951 (in Chinese)
|
[9] |
Poblenz C, Mates T, Craven M, DenBaars S and Speck J S 2002 Appl. Phys. Lett. 81 2767
|
[10] |
Yiota ldiota z A, öztürk M K, Bosi M, özccelik S and Kasap M 2009 Chin. Phys. B 18 4007
|
[11] |
Na H, Takado S, Sawada S, Kurouchi M, Akagi T, Naoi H, Araki T and Nanishi Y 2007 J. Cryst. Growth 300 177
|
[12] |
Yamasaki S, Asami S, Shibata N, Koike M, Manabe K, Tanaka T, Amano H and Akasaki I 1995 Appl. Phys. Lett. 66 1112
|
[13] |
Guo X, Wang H, Jiang D S, Wang Y T, Zhao D G, Zhu J J, Liu Z S, Zhang S M and Yang H 2010 Chin. Phys. B 19 106802
|
[14] |
Leyer M, Stellmach J, Meissner C, Pristovsek M and Kneissl M 2008 J. Cryst. Growth 310 4913
|
[15] |
Schuster M, Gervais P O, Jobst B, Hösler W, Averbeck R, Riechert H, Iberl A and Stömmer R 1999 J. Phys. D: Appl. Phys. 32 A56
|
[16] |
Pereira S, Correia M R, Pereira E, O'Donnell K P, Trager-Cowan C, Sweeney F and Alves E 2004 Phys. Rev. B 64 205311
|
[17] |
Stringfellow G B 2010 J. Cryst. Growth 312 735
|
[18] |
Parker C A, Roberts J C, Bedair S M, Reed M J, Liu S X and El-Masry N A 1999 Appl. Phys. Lett. 75 2776
|
[19] |
Jmerik V N, Mizerov A M, Shubina T V, Yagovkina, Listoshin V B, Sitnikova A A, Ivanov S V, Kim M H, Koike M and Kim B J 2007 J. Cryst. Growth 301 469
|
[20] |
Han B, Ulmer M P and Wessels B W 2004 J. Electron. Mater. 33 431
|
[21] |
Reshchikov M A and Morkocc H 2005 J. Appl. Phys. 97 061301
|
[22] |
Oila J, Saarinen K, Wickenden A E, Koleske D D, Henry R L and Twigg M E 2003 Appl. Phys. Lett. 82 1021
|
[23] |
van de Walle C G, Neugebauer J, Stampfl C, McCluskey M D and Johnson N M 1999 Acta Phys. Pol. A 96 613
|
[24] |
van de Walle C G 1997 Phys. Rev. B 56 R10020
|
[25] |
Wright A F 2002 J. Appl. Phys. 92 2575
|
[26] |
Mireles F and Ulloa S E 1998 Phys. Rev. B 58 3879.
|
[27] |
Toth M, Fleischer K and Phillips M R 1999 Phys. Rev. B 59 1575
|
[28] |
Koleske D D, Wickenden A E, Henry R L and Twigg M E 2002 J. Cryst. Growth 242 55
|
[29] |
Bradley S T, Goss S H, Brillson L J, Hwang J and Schaff W J 2003 J. Vac. Sci. Technol. 21 2558.
|
[30] |
Nakajima K, Ujihara T, Miyashita S and Sazaki G 2001 J. Appl. Phys. 89 146
|
[31] |
Tsai W C, Lin H, Ke W C, Chang W H, Chou W C, Chen W K and Lee M C 2007 Nanotechnology 18 405305
|
[32] |
Ho I and Stringfellow G B 1996 Appl. Phys. Lett. 69 2701
|
[33] |
Ganchenkova M G, Borodin V A, Laaksonen K and Nieminen R M 2008 Phys. Rev. B 77 075207
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|