Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 074702    DOI: 10.1088/1674-1056/20/7/074702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Turing pattern selection in a reaction–diffusion epidemic model

Wang Wei-Ming(王玮明)a)†, Liu Hou-Ye(刘厚业)a), Cai Yong-Li (蔡永丽)a), and Li Zhen-Qing (李镇清)b)
a College of Mathematics and Information Science, Wenzhou University, Wenzhou 325035, China; b State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
Abstract  We present Turing pattern selection in a reaction--diffusion epidemic model under zero-flux  boundary conditions. The value of this study is twofold. First, it establishes the amplitude equations for  the excited modes, which determines the stability of amplitudes towards uniform and inhomogeneous  perturbations. Second, it illustrates all five categories of Turing patterns close to the onset of Turing  bifurcation via numerical simulations which indicates that the model dynamics exhibits complex pattern  replication: on increasing the control parameter $\nu$, the sequence ``$H_0$ hexagons $\rightarrow$  $H_0$-hexagon-stripe mixtures $\rightarrow$ stripes $\rightarrow$ $H_{\pi}$-hexagon-stripe mixtures  $\rightarrow$ $H_{\pi}$ hexagons" is observed. This may enrich the pattern dynamics in a diffusive epidemic model.
Keywords:  epidemic model      pattern selection      amplitude equations      Turing instability  
Received:  08 January 2011      Revised:  25 February 2011      Accepted manuscript online: 
PACS:  47.54.-r (Pattern selection; pattern formation)  
  87.23.Cc (Population dynamics and ecological pattern formation)  
  89.75.Kd (Patterns)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant No. Y7080041).

Cite this article: 

Wang Wei-Ming(王玮明), Liu Hou-Ye(刘厚业), Cai Yong-Li (蔡永丽), and Li Zhen-Qing (李镇清) Turing pattern selection in a reaction–diffusion epidemic model 2011 Chin. Phys. B 20 074702

[1] Ma Z E, Zhou Y C and Wu J H 2009 Modeling and Dynamics of Infectious Diseases (Beijing: Higher Education Press)
[2] Kermack W O and McKendrick A G 1927 Proc. R. Soc. Lond. A 115 700
[3] Hethcote H W 2000 SIAM Rev. 42 599
[4] Fan M, Li Y M and Wang K 2001 Math. Biosci. 170 199
[5] Li Y M, Smith H L and Wang L C 2001 SIAM J. Appl. Math. 62 58
[6] Ruan S G and Wang W D 2003 J. Differential Equations 188 135
[7] Berezovsky F, Karev G, Song B and Castillo-Chavez C 2004 Math. Biosci. Eng. 1 1
[8] Wang W D and Zhao X Q 2004 Math. Biosci. 190 97
[9] Wang W D and Ruan S G 2004 J. Math. Anal. Appl. 291 775
[10] Allen L J S, Bolker B M, Lou Y and Nevai A L 2007 SIAM J. Appl. Math. 67 1283
[11] Xiao D M and Ruan S G 2007 Math. Biosci. 208 419
[12] Jin Z and Liu Q X 2006 Chin. Phys. 15 1248
[13] Zheng Z Z and Wang A L 2009 Chin. Phys. B 18 489
[14] Zhang H F, Michael S, Fu X C and Wang B H 2009 Chin. Phys. B 18 3639
[15] Liu M X and Ruan J 2009 Chin. Phys. B 18 5111
[16] Hosono Y and Ilyas B 1995 Math. Models Methods Appl. Sci. 5 935
[17] Cruickshank I, Gurney W and Veitch A 1999 Theor. Popu. Biol. 56 279
[18] Turechek W W and Madden L V 1999 Phytopathology 89 421
[19] Ferguson N M, Donnelly C A and Anderson R M 2001 Science 292 1155
[20] Grenfell B T, Bjornstad O N and Kappey J 2001 Nature 414 716
[21] Britton N F 2003 Essential Mathematical Biology (London: Springer Verlag)
[22] He D H and Stone L 2003 Proc. R. Soc. Lond. B 270 1519
[23] Lloyd A L and Jansen V A 2004 Math. Biosci. 188 1
[24] van Ballegooijen W M and Boerlijst M C 2004 Proc. Natl. Acad. Sci. 101 18246
[25] Filipe J A N and Maule M M 2004 J. Theor. Biol. 226 125
[26] Kenkre V M 2004 Phys. A 342 242
[27] Funk G A, Jansen V A A, Bonhoeffer S and Killingback T 2005 J. Theor. Biol. 233 221
[28] Pascual M and Guichard F 2005 TREE 20 88
[29] Festenberg N V, Gross T and Blasius B 2007 Math. Model. Nat. Phenom. 2 63
[30] Mulone G, Straughan B and Wang W 2007 Studies in Appl. Math. 118 117
[31] Wang K F and Wang W D 2007 Math. Biosci. 210 78
[32] Wang K F, Wang W D and Song S P 2008 J. Theor. Biol. 253 36
[33] Liu Q X and Jin Z 2007 J. Stat. Mech. P05002
[34] Malchow H, Petrovskii S V and Venturino E 2008 Spatiotemporal Patterns in Ecology and Epidemiology—Theory, Models and Simulation (Boca Raton: Chapman & Hall/CRC)
[35] Xu R and Ma Z E 2009 J. Theor. Biol. 257 499
[36] Sun G Q, Jin Z, Liu Q X and Li L 2008 J. Stat. Mech. P08011
[37] Sun G Q, Jin Z, Liu Q X and Li L 2008 Chin. Phys. B 17 3936
[38] Li L, Jin Z and Sun G Q 2008 Chin. Phys. Lett. 25 3500
[39] Turing A M 1952 Philos. T. Roy. Soc. B 237 37
[40] Newell A C and Whitehead J A 1969 J. Fluid Mech. 38 279
[41] Pe na B and P'erez-Garc'hia C 2000 Europhys. Lett. 51 300
[42] Pe na B and P'erez-Garc'hia C 2001 Phys. Rev. E 64 056213
[43] Gunaratne G H, Ouyang Q and Swinney H L 1994 Phys. Rev. E 50 2802
[44] Segel L A 1969 J. Fluid Mech. 38 203
[45] Ipsen M, Hynne F and Sorensen P G 1998 Chaos 8 834
[46] Ipsen M, Hynne F and Sorensen P G 2000 Physica D 136 66
[47] Ouyang Q 2000 Pattern Formation in Reaction-Diffusion Systems (Shanghai: Shanghai Sci-Tech Education Publishing House) (in Chinese)
[48] Ouyang Q, Gunaratne G H and Swinney H L 1993 Chaos 3 707
[49] Callahan T K and Knobloch E 1999 Physica D 132 339
[50] Dufiet V and Boissonade J 1992 J. Chem. Phys. 96 664
[51] Dufiet V and Boissonade J 1992 Phys. A 188 158
[52] Dufiet V and Boissonade J 1996 Phys. Rev. E 53 4883
[53] Wang W M, Lin Y Z, Rao F, Zhang L and Tan Y J 2010 J. Stat. Mech. P11036
[54] Wang W M, Wang W J, Lin Y Z and Tan Y J 2011 Chin. Phys. B 20 034702
[55] Okubo A and Levin S A 2001 Diffusion and Ecological Problems: Modern Perspectives 2nd ed (New York: Springer)
[56] Murray J D 2003 Mathematical Biology ,3rd ed (New York: Springer)
[57] Baurmann M, Gross T and Feudel U 2007 J. Theor. Biol. 245 220
[58] Wang W M, Liu Q X and Jin Z 2007 Phys. Rev. E 75 051913
[59] Wang W M, Zhang L, Wang H L and Li Z Q 2010 Ecol. Model. 221 131
[60] Lin W 2010 Chin. Phys. B 19 090206
[61] Ciliberto S, Coullet P, Lega J, Pampaloni E and Perez-Garcia C 1990 Phys. Rev. Lett. 65 2370
[62] Munteanu A and Sole R V 2006 Int. J. Bif. Chaos 16 3679
[1] A numerical study on pattern selection in crystal growth by using anisotropic lattice Boltzmann-phase field method
Zhaodong Zhang(张兆栋), Yuting Cao(曹宇婷), Dongke Sun(孙东科), Hui Xing(邢辉), Jincheng Wang(王锦程), Zhonghua Ni(倪中华). Chin. Phys. B, 2020, 29(2): 028103.
[2] Pattern dynamics of network-organized system with cross-diffusion
Qianqian Zheng(郑前前), Zhijie Wang(王直杰), Jianwei Shen(申建伟). Chin. Phys. B, 2017, 26(2): 020501.
[3] Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
Wang Zhi-Gang (王志刚), Gao Rui-Mei (高瑞梅), Fan Xiao-Ming (樊晓明), Han Qi-Xing (韩七星). Chin. Phys. B, 2014, 23(9): 090201.
[4] Pattern selection in a predation model with self and cross diffusion
Wang Wei-Ming(王玮明), Wang Wen-Juan(王文娟), Lin Ye-Zhi(林晔智), and Tan Yong-Ji(谭永基). Chin. Phys. B, 2011, 20(3): 034702.
[5] Epidemic spreading on networks with vaccination
Shi Hong-Jing(史红静), Duan Zhi-Sheng(段志生), Chen Guan-Rong(陈关荣), and Li Rong(李嵘). Chin. Phys. B, 2009, 18(8): 3309-3317.
[6] Modelling the spread of sexually transmitted diseases on scale-free networks
Liu Mao-Xing(刘茂省) and Ruan Jiong(阮炯). Chin. Phys. B, 2009, 18(6): 2115-2120.
[7] A stochastic epidemic model on homogeneous networks
Liu Mao-Xing(刘茂省) and Ruan Jiong(阮炯) . Chin. Phys. B, 2009, 18(12): 5111-5116.
No Suggested Reading articles found!