Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 054201    DOI: 10.1088/1674-1056/20/5/054201
RAPID COMMUNICATION Prev   Next  

Decoherence of elliptical states in phase space

Wang Yue-Yuan (王月媛)ab, Liu Zheng-Jun (刘正君)aLiao Qing-Hong (廖庆洪)a , Wang Ji-Cheng (王继成)a , Liu Shu-Tian (刘树田)a#br#
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China; b Key Laboratory for Advanced Functional Materials and Excited State Process of Heilongjiang Province,School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
Abstract  The effects of decoherence on elliptical states which concern the quantum superposition of N coherent states on an ellipse in the $\alpha$ plane are studied. The characteristic decoherence times are determined. The evolutions of the Wigner functions associated with these states are investigated theoretically and the losses of nonclassicality as a result of decoherence are discussed. The result shows that the decoherence of elliptical states is slower than circular states relying on the number of coherent states and the amplitude, and the constructed states have a higher resilience to losses.
Keywords:  elliptical states      Wigner distribution function      decoherence  
Received:  21 October 2010      Revised:  20 November 2010      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB301801) and the National Natural Science Foundation of China (Grant No. 10974039).

Cite this article: 

Wang Yue-Yuan (王月媛), Liu Zheng-Jun (刘正君), Liao Qing-Hong (廖庆洪), Wang Ji-Cheng (王继成), Liu Shu-Tian (刘树田) Decoherence of elliptical states in phase space 2011 Chin. Phys. B 20 054201

[1] Hillery M, O'Connell R F, Scully M O and Wigner E P 1984 Phys. Rep. 106 121
[2] Kenfack A and Zyczkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396
[3] Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier P 2006 Science 312 83
[4] Neergaard-Nielsen J S, Nielsen B M, Hettich C, Molmer K and Polzik E S 2006 Phys. Rev. Lett. 97 083604
[5] Wang Y Y, Wang J C and Liu S T 2010 Chin. Phys. B 19 074206
[6] Xu X X, Yuan H C and Hu L Y 2010 Acta Phys. Sin. 59 4661 (in Chinese)
[7] Eisert J, Scheel S, Hettich C and Plenio M B 2002 Phys. Rev. Lett. 89 137903
[8] Browne D E, Eisert J and Scheel S 2003 Phys. Rev. A 67 062320
[9] Giedke G and Cirac J I 2002 Phys. Rev. A 66 032316
[10] Nha H and Carmichael H J 2004 Phys. Rev. Lett. 93 020401
[11] Garcia-Patron R, Fiurasek J, Cerf N J, Wenger J, Tualle-Brouri R and Grangier P 2004 Phys. Rev. Lett. 93 130409
[12] Bartlett S D and Sanders B C 2002 Phys. Rev. A 65 042304
[13] Chuang I L and Nielsen M A 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) (Chapter12)
[14] Kim M S, Son W, Buzek V and Knight P L 2002 Phys. Rev. A 65 032323
[15] Wang X B 2002 Phys. Rev. A 66 024303
[16] Zurek W H 1991 Phys. Today 44 36
[17] Zurek W H 2003 Rev. Mod. Phys. 75 715
[18] Zurek W H 2007 Prog. Math. Phys. 48 1
[19] Zheng S B 2004 Chin. Phys. 13 1707
[20] Zheng S B 2010 Chin. Phys. B 19 044204
[21] Janszky J, Domokos P and Adam P 1993 Phys. Rev. A 48 2213
[22] Gagen M J 1995 Phys. Rev. A 51 2715
[23] Janszky J, Domokos P, Szabo S and Adam P 1995 Phys. Rev. A 51 4191
[24] Ragi R, Baseia B and Mizrahi S S 2000 J. Opt. B: Quan. Semiclass. Opt. 2 299
[25] Joseand W D and Mizrahi S S 2000 J. Opt. B: Quan. Semiclass. Opt. 2 306
[26] Wang Y Y, Liu Z J, Liao Q H and Liu S T 2010 Chin. Phys. B 19 054204
[27] Wang Y Y, Liao Q H, Liu Z J, Wang J C and Liu S T 2011 Opt. Commun. 284 282
[28] Kardar M and Golestanian R 1999 Rev. Mod. Phys. 71 1233
[29] Dalvit D A R and Maia Neto P A 2000 Phys. Rev. Lett. 84 798
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization
Xiaoyan Zhang(张晓燕), Jisuo Wang(王继锁), Lei Wang(王磊),Xiangguo Meng(孟祥国), and Baolong Liang(梁宝龙). Chin. Phys. B, 2022, 31(5): 054205.
[3] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[4] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[5] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[6] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[7] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[8] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[9] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[10] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[11] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[12] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[13] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[14] Decoherence of macroscopic objects from relativistic effect
Guo-Hui Dong(董国慧), Yu-Han Ma(马宇翰), Jing-Fu Chen(陈劲夫), Xin Wang(王欣), Chang-Pu Sun(孙昌璞). Chin. Phys. B, 2018, 27(10): 100301.
[15] Non-Gaussianity dynamics of two-mode squeezed number states subject to different types of noise based on cumulant theory
Shaohua Xiang(向少华), Xixiang Zhu(朱喜香), Kehui Song(宋克慧). Chin. Phys. B, 2018, 27(10): 100305.
No Suggested Reading articles found!