|
|
Solitons for a generalized variable-coefficient nonlinear Schrödinger equation |
Wang Huan(王欢) and Li Biao(李彪)† |
Department of Mathematics, Ningbo University, Ningbo 315211, China |
|
|
Abstract In this paper, we investigate some exact soliton solutions for a generalized variable-coefficients nonlinear Schrödinger equation (NLS) with an arbitrary time-dependent linear potential which describes the dynamics of soliton solutions in quasi-one-dimensional Bose-Einstein condensations. Under some reasonable assumptions, one-soliton and two-soliton solutions are constructed analytically by the Hirota method. From our results, some previous one- and two-soliton solutions for some NLS-type equations can be recovered by some appropriate selection of the various parameters. Some figures are given to demonstrate some properties of the one- and the two-soliton and the discussion about the integrability property and the Hirota method is given finally.
|
Received: 13 August 2010
Revised: 10 January 2011
Accepted manuscript online:
|
PACS:
|
02.30.Jr
|
(Partial differential equations)
|
|
05.45.Yv
|
(Solitons)
|
|
02.30.Ik
|
(Integrable systems)
|
|
Fund: Project supported by the Natural Science Foundations of Zhejiang Province of China (Grant No. Y6090592), the National Natural Science Foundation of China (Grant Nos. 11041003 and 10735030), Ningbo Natural Science Foundation (Grant Nos. 2010A610095, 2010A610103 and 2009B21003), and K.C. Wong Magna Fund in Ningbo University. |
Cite this article:
Wang Huan(王欢) and Li Biao(李彪) Solitons for a generalized variable-coefficient nonlinear Schrödinger equation 2011 Chin. Phys. B 20 040203
|
[1] |
Gu C H, Hu H S and Zhou Z X 1999 Darboux Transformation in Soliton Theory and Its Geometric Applications (Shanghai: Shanghai Scientific and Technical Press) (in Chinse)
|
[2] |
Ablowitz M J and Clarkson P A 1991 Soliton, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge University Press) bibitem 3 Bluman G W and Anco S C 2002 Symmetry and Integration Methods for Differential Equations (New York: Springer) bibitem 4Yao R X, Jiao X Y and Lou S Y 2009 Chin. Phys. B 18 1821 bibitem 5Wang Y F, Lou S Y and Qian X M 2010 Chin. Phys. B 19 050202 bibitem 6Jiao X Y and Lou S Y 2009 Chin. Phys. B 18 3611
|
[7] |
Hu X R, Chen Y and Huang F 2010 Chin. Phys. B 19 080203
|
[8] |
Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201
|
[9] |
Lou S Y, Tang X Y and Lin J 2000 J. Math. Phys. 2000 41 8286
|
[10] |
Tang X Y, Qian X M, Lin J and Lou S Y 2004 J. Phys. Soc. Jpn. 73 1464
|
[11] |
Lou S Y and Ma H C 2005 J. Phys. A: Math. Gen. 38 L129 bibitem 12Ma H C and Lou S Y 2005 Chin. Phys. 14 1495
|
[13] |
Li B, Ye W C and Chen Y 2008 J. Math. Phys. 49 103503 bibitem 14Li B, Li Y Q and Chen Y 2009 Commun. Theor. Phys. 50 773
|
[15] |
Wang J and Li B 2009 Chin. Phys. B 18 2109 bibitem 16Zhang H P, Li B, Chen Y and Huang F 2010 Chin. Phys. B 19 020201
|
[17] |
Hirota R 1971 Phys. Rev. Lett. 27 1192
|
[18] |
Li Z B and Liu Y P 2002 Comput. Phys. Commun. 148 256
|
[19] |
Fan E 2000 Phys. Lett. A 277 212
|
[20] |
Yan Z Y 2001 Phys. Lett. A 292 100
|
[21] |
Lü Z S and Zhang H Q 2003 Chaos, Solitons and Fractals 17 669
|
[22] |
Li B, Chen Y and Zhang H Q 2002 J. Phys. A: Math. Gen. 35 8253
|
[23] |
Gao Y T and Tian B 2001 Comput. Phys. Commun. 133 158
|
[24] |
Lou S Y 2000 Phys. Lett. A 277 94 bibitem 25Lou S Y and Ruan H Y 2001 J. Phys. A: Math. Gen. 34 305 bibitem 26Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601 bibitem 27Li W, Liu S B and Yang W 2010 Chin. Phys. B 19 030307
|
[28] |
Li B, Chen Y and Li Y Q 2008 Z. Naturforsch. 63a 763 bibitem 29Li B 2007 Int. J. Mod. Phys. C 18 1187 bibitem 30Zhang H P, Li B and Chen Y 2010 Chin. Phys. B 19 060302
|
[31] |
Fan E G 2003 J. Phys. A: Math. Gen. 36 7009
|
[32] |
Yan Z Y 2004 Chaos, Solitons and Fractals 21 1013
|
[33] |
Li Z D and Li Q Y 2007 Ann. Phys. 322 1961 bibitem 34Song W W, Li Q Y, Li Z D and Fu G S 2010 Chin. Phys. B 19 070503
|
[35] |
Wu Y Q 2010 Chin. Phys. B 19 040304
|
[36] |
Bronski J C, Carr L D, Deconinck B and Kutz J N 2001 Phys. Rev. Lett. 86 1402
|
[37] |
Dum R, Cirac J I, Lewenstein M and Zoller P 1998 Phys. Rev. Lett. 80 2972
|
[38] |
Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604
|
[39] |
Li Z D, Li Q Y, He P B, Liang J Q and Liu W M 2010 Phys. Rev. A 81 015602
|
[40] |
Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
|
[41] |
Zhang X F, Yang Q, Zhang J F, Chen X Z and Liu W M 2008 Phys. Rev. A 77 023613
|
[42] |
Li B and Chen Y 2007 Commun. Theor. Phys. 48 391
|
[43] |
Li B, Zhang X F, Li Y Q, Chen Y and Liu W M 2008 Phys. Rev. A 78 023608
|
[44] |
Yang Q and Zhang J F 2006 Opt. Commun. 258 35
|
[45] |
Kagan Y, Muryshev A E and Shlyapnikov G V 1998 Phys. Rev. Lett. 81 933
|
[46] |
Li Q Y, Li Z D, Wang S X, Song W W and Fu G S 2009 Opt. Commun. 282 1676
|
[47] |
Li Z D, Li Q Y, Hu X H, Zheng Z X, Sun Y B 2007 Ann. Phys. 322 2545
|
[48] |
Li Z D, Li Q Y, He P B, Bai Z G and Sun Y B 2007 Ann. Phys. 322 2945
|
[49] |
Khawaja U A 2007 Phys. Rev. E 75 066607
|
[50] |
Serkin V N, Hasegawa A and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102
|
[51] |
Kivshar and Malomed B A 1989 Rev. Mod. Phys. 61 763
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|