Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 120303    DOI: 10.1088/1674-1056/20/12/120303
GENERAL Prev   Next  

Energy level of an electron in a saddle-potential quantum dot under a uniform magnetic field obtained by the invariant eigenoperator method

Xie Chuan-Mei(谢传梅)a)b) and Fan Hong-Yi(范洪义)b)
a College of Physics and Material Science, Anhui University, Hefei 230039, China; b Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  We show that the recently proposed invariant eigenoperator method can be successfully applied to solving the energy levels of an electron in a saddle-potential quantum dot under a uniform magnetic field. The Landau diamagnetism decreases with the value ωy2 - ωx2 due to the existence of the saddle potential.
Keywords:  saddle-potential quantum dot      energy level of electron      invariant eigenoperator method  
Received:  16 May 2011      Revised:  25 June 2011      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  73.63.Kv (Quantum dots)  
Fund: Project supported by the Doctoral Scientific Research Startup Fund of Anhui University, China (Grant No. 33190059), the National Natural Science Foundation of China (Grant No. 10874174), the President Foundation of the Chinese Academy of Sciences, and the Open Fund of the State Key Laboratory for Infrared Physics.

Cite this article: 

Xie Chuan-Mei(谢传梅) and Fan Hong-Yi(范洪义) Energy level of an electron in a saddle-potential quantum dot under a uniform magnetic field obtained by the invariant eigenoperator method 2011 Chin. Phys. B 20 120303

[1] Schrödinger E 1928 Four Lectures on Wave Mechanics (London & Glasgow: Blackie & Son Ltd)
[2] Heisenberg W 1949 The Physical Principles of the Quantum Theory (New York: Dover Publications)
[3] Fan H Y and Li C 2004 Phys. Lett. A 321 75
[4] Fan H Y and Wu H 2005 Int. J. Mod. Phys. B 19 4073
[5] Fan H Y and Tang X B 2005 J. Opt. Phys. B 7 194
[6] Fan H Y and Jing S C 2005 Mod. Phys. Lett. A 20 691
[7] Fan H Y, Hu H P and Tang X B 2005 J. Phys. A: Math. Gen. 38 4391
[8] Fan H Y and Wu H 2004 IL Nuovo Cimento B 119 1105
[9] Fan H Y and Lu H L 2004 IL Nuovo Cimento B 119 983
[10] Lu H L and Fan H Y 2009 Chin. Phys. B 18 4657
[11] Meng X G, Fan H Y and Wang J S 2010 Chin. Phys. B 19 070303
[12] Landau L D 1930 Zeitschrift fur Physik 64 629
[13] Landau L D and Lifshitz E M 1977 Quantum Mechanics (Singapore: World Scientific)
[14] Johnson M H and Lippmann B A 1946 Phys. Rev. 76 828
[15] Vassilios F, Horing N J M, Sabeeh K, Yar A and Glasser M L 2007 Phys. Rev. B 76 115328
[1] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[2] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[5] Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
Yueshui Zhang(张越水) and Lei Wang(王磊). Chin. Phys. B, 2022, 31(11): 110205.
[6] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[7] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[8] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[9] Digraph states and their neural network representations
Ying Yang(杨莹) and Huaixin Cao(曹怀信). Chin. Phys. B, 2022, 31(6): 060303.
[10] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[11] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[12] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[13] Theoretical study of (e, 2e) triple differential cross sections of pyrimidine and tetrahydrofurfuryl alcohol molecules using multi-center distorted-wave method
Yiao Wang(王亦傲), Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛), Chunkai Xu(徐春凯), and Xiangjun Chen(陈向军). Chin. Phys. B, 2022, 31(1): 010202.
[14] Topology of a parity-time symmetric non-Hermitian rhombic lattice
Shumai Zhang(张舒迈), Liang Jin(金亮), and Zhi Song(宋智). Chin. Phys. B, 2022, 31(1): 010312.
[15] Connes distance of 2D harmonic oscillators in quantum phase space
Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅). Chin. Phys. B, 2021, 30(11): 110203.
No Suggested Reading articles found!