Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 107302    DOI: 10.1088/1674-1056/20/10/107302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic transport properties of phenylacetylene molecular junctions

Liu Wen(刘文)a), Cheng Jie(程杰)a), Yan Cui-Xia(闫翠霞)a), Li Hai-Hong(李海宏)a), Wang Yong-Juan(王永娟) a), and Liu De-Sheng(刘德胜)a)b)†
a Physics and Information Engineering Department, Jining University, Qufu 273155, China; b School of Physics, Shandong University, Jinan 250100, China
Abstract  Electronic transport properties of a kind of phenylacetylene compound— (4-mercaptophenyl)-phenylacetylene are calculated by the first-principles method in the framework of density functional theory and the nonequilibrium Green's function formalism. The molecular junction shows an obvious rectifying behaviour at a bias voltage larger than 1.0 V. The rectification effect is attributed to the asymmetry of the interface contacts. Moreover, at a bias voltage larger than 2.0 V, which is not referred to in a relevant experiment [Fang L, Park J Y, Ma H, Jen A K Y and Salmeron M 2007 Langmuir 23 11522], we find a negative differential resistance phenomenon. The negative differential resistance effect may originate from the change of the delocalization degree of the molecular orbitals induced by the bias.
Keywords:  phenylacetylene compound      electronic transport      rectification  
Received:  30 March 2011      Revised:  08 June 2011      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  85.65.+h (Molecular electronic devices)  
  31.15.ar  
Fund: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 11047148) and the Jining University Research Program, China (Grant No. 2010QNKJ04).

Cite this article: 

Liu Wen(刘文), Cheng Jie(程杰), Yan Cui-Xia(闫翠霞), Li Hai-Hong(李海宏), Wang Yong-Juan(王永娟), and Liu De-Sheng(刘德胜) Electronic transport properties of phenylacetylene molecular junctions 2011 Chin. Phys. B 20 107302

[1] Bao Z N 2004 Nat. Mater. 3 137
[2] Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Science 278 252
[3] Chen J and Reed M A 2002 Chem. Phys. 281 127
[4] Cao H, Jiang J, Ma J and Luo Y 2008 J. Phys. Chem. C 112 11018
[5] Huang J, Li Q X, Li Z Y and Yang J L 2008 J. Nanosci. Nanotechnol. 8 1
[5] Datta S 2005 Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press) pp. 1-10
[7] Aviram A and Ratner M A 277 Chem. Phys. Lett. 29 1974
[8] Troisi A and Ratner M A 2004 Nano Lett. 4 59
[9] Lin L L, Song X N, Leng J C, Li Z L, Luo Y and Wang C K 2010 J. Phys. Chem. C 114 5199
[10] Li T, Hu W P and Zhu D B 2010 Adv. Mater. 22 286
[11] Li Z L, Li H Z, Ma Y, Zhang G P and Wang C K 2010 Chin. Phys. B 19 067305
[12] An Y P, Yang C L, Wang M S and Wang D H 2010 Acta Phys. Sin. 59 2010 (in Chinese)
[13] Long M Q, Chen K Q, Wang L L, Zou B S and Shuai Z G 2007 Appl. Phys. Lett. 91 233512
[14] Yang C L, Gao F, Zhang X Y and Han K L 2005 J. Chem. Phys. 123 204308
[15] Feng X Y, Li Z Y and Yang J L 2009 J. Phys. Chem. C 113 21911
[16] Zhou Y X, Jiang F, Chen H, Note R, Mizuseki H and Kawazoe Y 2008 J. Chem. Phys. 128 044704
[17] Zhou Y X, Jiang F, Chen H, Note R, Mizuseki H and Kawazoe Y 2007 Phys. Rev. B 75 245407
[18] Li Z Y and Kosov D S 2007 Phys. Rev. B 76 035415
[19] Guo W, Hu Y B, Zhang Y Y, Du S X and Gao H J 2009 Chin. Phys. B 18 2502
[20] Cyganik P, Buck M, Azzam W and Wo1l C 2004 J. Phys. Chem. B 108 4989
[21] Yasseri A A, Syomin D, Malinovskii V L, Loewe R S, Lindsey J S, Zaera F and Bocian D F 2004 J. Am. Chem. Soc. 126 11944
[22] Gölzh"auser A, Eck W, Geyer W, Stadler V, Weimann T, Hinze P and Grunze M 2001 Adv. Mater. 13 806
[23] Fang L, Park J Y, Ma H, Jen A K Y and Salmeron M 2007 Langmuir 23 11522
[24] Zareie M H, Ma H, Reed B W, Jen A K Y and Sarikaya M 2003 Nano Lett. 3 139
[25] Dou R F, Ma X C, Xi L, Yip H L, Wong K Y, Lau W M, Jia J F, Xue Q K, Yang W S, Ma H and Jen A K Y 2006 Langmuir 22 3049
[26] Das B and Abe S J 2006 J. Phys. Chem. B 110 4247
[27] Troullier N and Martins J 1991 Phys. Rev. B 43 1993
[28] Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordej'on P and S'anchez-Porta D 2002 J. Phys.: Conden. Matter 14 2745
[29] Robert M M 2003 Chem. Rev. 103 3803
[30] Stadler R, Geskin V and Cornil J 2008 J. Phys.: Condens. Matter 20 374105
[1] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[2] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[3] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[4] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[5] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[6] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[7] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[8] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[9] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
[10] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[11] A phononic rectifier based on carbon schwarzite host-guest system
Zhongwei Zhang(张忠卫), Yulou Ouyang(欧阳宇楼), Jie Chen(陈杰), and Sebastian Volz. Chin. Phys. B, 2020, 29(12): 124402.
[12] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[13] Ratchet transport of overdamped particles in superimposed driven lattices
Shu-Na Huang(黄淑娜), Wei-Jing Zhu(朱薇静), Xiao-Qun Huang(黄小群), Bao-Quan Ai(艾保全), Feng-Guo Li(李丰果). Chin. Phys. B, 2019, 28(4): 040502.
[14] Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2018, 27(4): 047201.
[15] Electronic states and spin-filter effect in three-dimensional topological insulator Bi2Se3 nanoribbons
Genhua Liu(刘根华), Pingguo Xiao(肖平国), Piaorong Xu(徐飘荣), Huiying Zhou(周慧英), Guanghui Zhou(周光辉). Chin. Phys. B, 2018, 27(1): 017304.
No Suggested Reading articles found!