CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic transport properties of phenylacetylene molecular junctions |
Liu Wen(刘文)a), Cheng Jie(程杰)a), Yan Cui-Xia(闫翠霞)a), Li Hai-Hong(李海宏)a), Wang Yong-Juan(王永娟) a), and Liu De-Sheng(刘德胜)a)b)† |
a Physics and Information Engineering Department, Jining University, Qufu 273155, China; b School of Physics, Shandong University, Jinan 250100, China |
|
|
Abstract Electronic transport properties of a kind of phenylacetylene compound— (4-mercaptophenyl)-phenylacetylene are calculated by the first-principles method in the framework of density functional theory and the nonequilibrium Green's function formalism. The molecular junction shows an obvious rectifying behaviour at a bias voltage larger than 1.0 V. The rectification effect is attributed to the asymmetry of the interface contacts. Moreover, at a bias voltage larger than 2.0 V, which is not referred to in a relevant experiment [Fang L, Park J Y, Ma H, Jen A K Y and Salmeron M 2007 Langmuir 23 11522], we find a negative differential resistance phenomenon. The negative differential resistance effect may originate from the change of the delocalization degree of the molecular orbitals induced by the bias.
|
Received: 30 March 2011
Revised: 08 June 2011
Accepted manuscript online:
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
85.65.+h
|
(Molecular electronic devices)
|
|
31.15.ar
|
|
|
Fund: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 11047148) and the Jining University Research Program, China (Grant No. 2010QNKJ04). |
Cite this article:
Liu Wen(刘文), Cheng Jie(程杰), Yan Cui-Xia(闫翠霞), Li Hai-Hong(李海宏), Wang Yong-Juan(王永娟), and Liu De-Sheng(刘德胜) Electronic transport properties of phenylacetylene molecular junctions 2011 Chin. Phys. B 20 107302
|
[1] |
Bao Z N 2004 Nat. Mater. 3 137
|
[2] |
Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Science 278 252
|
[3] |
Chen J and Reed M A 2002 Chem. Phys. 281 127
|
[4] |
Cao H, Jiang J, Ma J and Luo Y 2008 J. Phys. Chem. C 112 11018
|
[5] |
Huang J, Li Q X, Li Z Y and Yang J L 2008 J. Nanosci. Nanotechnol. 8 1
|
[5] |
Datta S 2005 Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press) pp. 1-10
|
[7] |
Aviram A and Ratner M A 277 Chem. Phys. Lett. 29 1974
|
[8] |
Troisi A and Ratner M A 2004 Nano Lett. 4 59
|
[9] |
Lin L L, Song X N, Leng J C, Li Z L, Luo Y and Wang C K 2010 J. Phys. Chem. C 114 5199
|
[10] |
Li T, Hu W P and Zhu D B 2010 Adv. Mater. 22 286
|
[11] |
Li Z L, Li H Z, Ma Y, Zhang G P and Wang C K 2010 Chin. Phys. B 19 067305
|
[12] |
An Y P, Yang C L, Wang M S and Wang D H 2010 Acta Phys. Sin. 59 2010 (in Chinese)
|
[13] |
Long M Q, Chen K Q, Wang L L, Zou B S and Shuai Z G 2007 Appl. Phys. Lett. 91 233512
|
[14] |
Yang C L, Gao F, Zhang X Y and Han K L 2005 J. Chem. Phys. 123 204308
|
[15] |
Feng X Y, Li Z Y and Yang J L 2009 J. Phys. Chem. C 113 21911
|
[16] |
Zhou Y X, Jiang F, Chen H, Note R, Mizuseki H and Kawazoe Y 2008 J. Chem. Phys. 128 044704
|
[17] |
Zhou Y X, Jiang F, Chen H, Note R, Mizuseki H and Kawazoe Y 2007 Phys. Rev. B 75 245407
|
[18] |
Li Z Y and Kosov D S 2007 Phys. Rev. B 76 035415
|
[19] |
Guo W, Hu Y B, Zhang Y Y, Du S X and Gao H J 2009 Chin. Phys. B 18 2502
|
[20] |
Cyganik P, Buck M, Azzam W and Wo1l C 2004 J. Phys. Chem. B 108 4989
|
[21] |
Yasseri A A, Syomin D, Malinovskii V L, Loewe R S, Lindsey J S, Zaera F and Bocian D F 2004 J. Am. Chem. Soc. 126 11944
|
[22] |
Gölzh"auser A, Eck W, Geyer W, Stadler V, Weimann T, Hinze P and Grunze M 2001 Adv. Mater. 13 806
|
[23] |
Fang L, Park J Y, Ma H, Jen A K Y and Salmeron M 2007 Langmuir 23 11522
|
[24] |
Zareie M H, Ma H, Reed B W, Jen A K Y and Sarikaya M 2003 Nano Lett. 3 139
|
[25] |
Dou R F, Ma X C, Xi L, Yip H L, Wong K Y, Lau W M, Jia J F, Xue Q K, Yang W S, Ma H and Jen A K Y 2006 Langmuir 22 3049
|
[26] |
Das B and Abe S J 2006 J. Phys. Chem. B 110 4247
|
[27] |
Troullier N and Martins J 1991 Phys. Rev. B 43 1993
|
[28] |
Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordej'on P and S'anchez-Porta D 2002 J. Phys.: Conden. Matter 14 2745
|
[29] |
Robert M M 2003 Chem. Rev. 103 3803
|
[30] |
Stadler R, Geskin V and Cornil J 2008 J. Phys.: Condens. Matter 20 374105
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|