Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 104701    DOI: 10.1088/1674-1056/20/10/104701
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Scaling study of the combustion performance of gas–gas rocket injectors

Wang Xiao-Wei(汪小卫), Cai Guo-Biao(蔡国飙), and Jin Ping(金平)
School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract  To obtain the key subelements that may influence the scaling of gas-gas injector combustor performance, the combustion performance subelements in a liquid propellant rocket engine combustor are initially analysed based on the results of a previous study on the scaling of a gas-gas combustion flowfield. Analysis indicates that inner wall friction loss and heat-flux loss are two key issues in gaining the scaling criterion of the combustion performance. The similarity conditions of the inner wall friction loss and heat-flux loss in a gas-gas combustion chamber are obtained by theoretical analyses. Then the theoretical scaling criterion was obtained for the combustion performance, but it proved to be impractical. The criterion conditions, the wall friction and the heat flux are further analysed in detail to obtain the specific engineering scaling criterion of the combustion performance. The results indicate that when the inner flowfields in the combustors are similar, the combustor wall shear stress will have similar distributions qualitatively and will be directly proportional to pc0.8 dt-0.2 quantitatively. In addition, the combustion peformance will remain unchanged. Furthermore, multi-element injector chambers with different geometric sizes and at different pressures are numerically simulated and the wall shear stress and combustion efficiencies are solved and compared with each other. A multi-element injector chamber is designed and hot-fire tested at several chamber pressures and the combustion performances are measured in a total of nine hot-fire tests. The numerical and experimental results verified the similarities among combustor wall shear stress and combustion performances at different chamber pressures and geometries, with the criterion applied.
Keywords:  scaling      combustion performance      subscale combustor wall friction      gas-gas combustion  
Received:  16 March 2011      Revised:  16 May 2011      Accepted manuscript online: 
PACS:  47.70.-n (Reactive and radiative flows)  
  84.60.Bk (Performance characteristics of energy conversion systems; figure of merit)  
  62.40.+i (Anelasticity, internal friction, stress relaxation, and mechanical resonances)  
  28.50.Ky (Propulsion reactors)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA702*) and the Innovation Foundation of Beijing University of Aeronautics and Astronautics for PhD Graduates (Grant No. 430569).

Cite this article: 

Wang Xiao-Wei(汪小卫), Cai Guo-Biao(蔡国飙), and Jin Ping(金平) Scaling study of the combustion performance of gas–gas rocket injectors 2011 Chin. Phys. B 20 104701

[1] Dexter C E, Fisher M F, Hulka J R, Denisov K P, Shibanov A A and Agarkov A F 2004 Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis and Design ed. Yang V, Habiballah M, Hulka J and Popp M Progress in Astronautics and Aeronautics 200 p. 553
[2] Kenny R J, Moser M D, Hulka J R and Jones G 2006 AIAA Paper No. 4705
[3] Hulka J R 2008 AIAA Paper No. 5113
[4] Davis J A and Campbell R L 1997 AIAA Paper No. 3318
[5] Wim A, de Groot, Thomas J, McGuire and Steven J Schneider 1997 AIAA Paper No. 2847
[6] Calhoon D, Ito J and Kors D 1973 NASA CR-121234, Contract NAS3-13379
[7] Foust M J, Deshpande M, Pal S, Ni T, Merkle C L and Santoro R J 1996 AIAA Paper No. 0646
[8] Schley C A, Hagemann G and Tucker P K 1997 AIAA Paper No. 3302
[9] Tucker P K, Klemt M D and Smith T D 1997 AIAA Paper No. 3350
[10] Farhangi S, Yu T, Rojas L, Sprouse K and McKinnon J 1999 AIAA Paper No. 2757
[11] Archambault M R, Talley D and Peroomian O 2002 AIAA Paper No. 1088
[12] Smith T D, Klem M D and Breisacher K J 2002 NASA/TM-2002-211982
[13] Marshall W M, Pal S, Woodward R D and Santoro R J 2005 AIAA Paper No. 3572
[14] Lin J, West J S, Williamst R W, Tucker P K and Chenoweth J D 2005 AIAA Paper No. 4524
[15] Tucker P K, Menon S, Merkle C L, Oefelein J C and Yang V 2007 AIAA Paper No. 5572
[16] Tucker P K, Menon S, Merkle C L, Oefelein J C and Yang V 2008 AIAA Paper No. 5226
[17] Vaidyanathan R, Tucker P K, Papial N and Shyy W 2004 J. Propul. Power 20 705
[18] Sozer E, Vaidyanathan A, Segal C and Shyy W 2009 AIAA Paper No. 0449
[19] Cai G B, Wang X W, Jin P and Gao Y S 2008 AIAA Paper No. 4562
[20] Wang X W, Cai G B and Gao Y S 2009 AIAA Paper No. 5042
[21] Wang X W, Gao Y S and Cai G B 2010 J. Aerospace Power 25 691 (in Chinese)
[22] Wang X W, Gao Y S and Cai G B 2010 J. Aerospace Power 25 1401 (in Chinese)
[23] Wang X W, Jin P, Zhang G Z and Cai G B 2008 J. Propul. Technol. 4 407 (in Chinese)
[24] Wang X W, Jin P and Cai G B 2009 J. Beijing University of Aeronautics and Astronautics 35 1095 (in Chinese)
[25] Wang X W, Jin P and Cai G B 2010 Acta Aeronautica et Astronautica Sinica 32 1305 (in Chinese)
[26] Cai G B, Wang X W, Jin P and Gao Y S 2011 J. Propul. Power (accepted)
[27] Wang X W, Cai G B and Jin P 2010 Chin. Phys. B 19 019401
[28] Wang X W, Cai G B and Gao Y 2011 Chin. Phys. B 20 064701
[29] JANNAF Rocket Engine Performance Prediction and Evaluation Manual 1975 CPIA Publication p. 246
[30] Coats D E 2004 Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis and Design ed. Yang V, Habiballah M, Hulka J and Popp M Progress in Astronautics and Aeronautics 200 p. 601
[31] Huzel D K and Huang D H 1992 Modern Engineering for Design of Liquid-Propellant Rocket Engines, Progress in Astronautics and Aeronautics 147 AIAA, Washington, DC
[32] Gao Y W 2002 Experimental Fluid Dynamics (Xian: Northwestern Polytechnical University Press) (in Chinese)
[33] Pope S B 2000 Turbulent Flows (Cambridge: Cambridge University Press)
[34] Bian B M, He A Z, Li Z H, Yang L, Zhang P, Shen Z H and Ni X W 2005 Acta Phys. Sin. 54 5534 (in Chinese)
[35] Liu G Q 1993 Theory of Rocket Engines (Beijing: Aerospace Press) (in Chinese)
[1] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[2] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[3] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[4] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[5] Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator
Shun Wang(王顺) and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2022, 31(1): 013201.
[6] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[7] Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal
Yuye Wang(王与烨), Yuchen Ren(任宇琛), Degang Xu(徐德刚), Longhuang Tang(唐隆煌), Yixin He(贺奕焮), Ci Song(宋词), Linyu Chen(陈霖宇), Changzhao Li(李长昭), Chao Yan(闫超), Jianquan Yao(姚建铨). Chin. Phys. B, 2018, 27(11): 114213.
[8] Ultrasound wave propagation in glass-bead packing under isotropic compression and uniaxial shear
Zhi-Gang Zhou(周志刚), Yi-Min Jiang(蒋亦民), Mei-Ying Hou(厚美瑛). Chin. Phys. B, 2017, 26(8): 084502.
[9] Equivalent electron correlations in nonsequential double ionization of noble atoms
Shansi Dong(董善思), Qiujing Han(韩秋静), Jingtao Zhang(张敬涛). Chin. Phys. B, 2017, 26(2): 023202.
[10] Scaling of weighted spectral distribution in weighted small-world networks
Bo Jiao(焦波), Xiao-Qun Wu(吴晓群). Chin. Phys. B, 2017, 26(2): 028901.
[11] Linear synchronization and circuit implementation of chaotic system with complete amplitude control
Chun-Biao Li(李春彪), Wesley Joo-Chen Thio, Julien Clinton Sprott, Ruo-Xun Zhang(张若洵), Tian-Ai Lu(陆天爱). Chin. Phys. B, 2017, 26(12): 120501.
[12] Studies on convergence and scaling law of Thomson backscattering spectra in strong fields
Han-Zhang Xie(谢含章), Chun Jiang(蒋纯), Bai-Song Xie(谢柏松). Chin. Phys. B, 2017, 26(12): 124101.
[13] Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices
Jie Yu(于杰), Kun-ji Chen(陈坤基), Zhong-yuan Ma(马忠元), Xin-xin Zhang(张鑫鑫), Xiao-fan Jiang(江小帆), Yang-qing Wu(吴仰晴), Xin-fan Huang(黄信凡), Shunri Oda. Chin. Phys. B, 2016, 25(9): 097304.
[14] Static and dynamic properties of polymer brush with topological ring structures: Molecular dynamic simulation
Wu-Bing Wan(万吴兵), Hong-Hong Lv(吕红红), Holger Merlitz(候格), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2016, 25(10): 106101.
[15] Structural and robustness properties of smart-city transportation networks
Zhang Zhen-Gang (张振刚), Ding Zhuo (丁卓), Fan Jing-Fang (樊京芳), Meng Jun (孟君), Ding Yi-Min (丁益民), Ye Fang-Fu (叶方富), Chen Xiao-Song (陈晓松). Chin. Phys. B, 2015, 24(9): 090201.
No Suggested Reading articles found!