Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 105101    DOI: 10.1088/1674-1056/20/10/105101
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

How do quantum numbers generally vary in the adiabatic transformation of an ideal gas?

T. Yarmana) and A. L. Kholmetskiib)†
a Department of Engineering, Okan University, Akfirat, Istanbul, Turkey & Savronik, Eskisehir, Turkey; b Department of Physics, Belarus State University, 4 Nezavisimosti Avenue 220030, Minsk, Belarus
Abstract  We continue to analyse the known law of adiabatic transformation for an ideal gas PV5/3 = Constant, where P is the pressure and V is the volume, and following the approach of non-relativistic quantum mechanics which we suggested in a previous work (Yarman et al. 2010 Int. J. Phys. Sci. 5 1524). We explicitly determine the constant for the general parallelepiped geometry of a container. We also disclose how the quantum numbers associated with molecules of an ideal gas vary through an arbitrary adiabatic transformation. Physical implications of the results obtained are discussed.
Keywords:  ideal gas      adiabatic transformation      non-relativistic quantum mechanics  
Received:  03 March 2011      Revised:  04 April 2011      Accepted manuscript online: 
PACS:  51.30.+i (Thermodynamic properties, equations of state)  

Cite this article: 

T. Yarman and A. L. Kholmetskii How do quantum numbers generally vary in the adiabatic transformation of an ideal gas? 2011 Chin. Phys. B 20 105101

[1] Sommerfeld A 1964 Thermodynamics and Statistical Mechanics (New York: Academic Press)
[2] Halliday D, Resnick R and Walker J 1997 Fundamentals of Physics (New York: Wiley)
[3] ter Haar D and Wergeland H 1966 Elements of Thermodynamics (Reading, MA: Addison-Wesley)
[4] van Wylen G J and Sonntag R E 1985 Fundametals of Classical Thermodynamics (New York: Wiley)
[5] Yarman T, Kholmetskii A and Korfalhi O 2010 Int. J. Phys. Sci. 5 1524
[6] Moore W J 1955 Physical Chemistry (New York: Prentice Hall, Inc.)
[7] Landau L D and Lifshitz E M 1979 Quantum Mechanics: Non-relativistic Theory 3rd edn. (Oxford: Elsevier Science)
[8] Yarman T 2004 Optics and Spectroscopy 97 683
[9] Yarman T 2004 Optics and Spectroscopy 97 691
[10] Yarman T 2009 Int. J. Theor. Phys. 48 2235
[11] Yarman T, Kholmetskii A L and Korfalhi O 2011 Journal of Thermal Science and Technology, in press
[12] Yarman T 2010 Quantum Mechanical Framework Behind the End Results of the General Theory of Relativity — Matter Is Built on a Universal Matter Architecture (New York: Nova Publishers)
[1] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[2] The universal characteristic water content of aqueous solutions
Xiao Huang(黄晓), Ze-Xian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2019, 28(6): 065101.
[3] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[4] Accurate quantification of hydration number for polyethylene glycol molecules
Wei Guo(郭伟), Lishan Zhao(赵立山), Xin Gao(高欣), Zexian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2018, 27(5): 055101.
[5] Effects of temperature and pressure on thermodynamic properties of Cd0.25Zn0.75 alloy
Najm Ul Aarifeen, A Afaq. Chin. Phys. B, 2017, 26(12): 123103.
[6] Thermodynamic properties of ZnSe under pressure and with variation in temperature
Najm Ul Aarifeen, A Afaq. Chin. Phys. B, 2017, 26(9): 093105.
[7] Equation of state for warm dense lithium: A first principles investigation
Feiyun Long(龙飞沄), Haitao Liu(刘海涛), Dafang Li(李大芳), Jun Yan(颜君). Chin. Phys. B, 2017, 26(6): 065101.
[8] Recrystallization of freezable bound water in aqueous solutions of medium concentrations
Lishan Zhao(赵立山), Liqing Pan(潘礼庆), Ailing Ji(纪爱玲), Zexian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2016, 25(7): 075101.
[9] Thermodynamic study of fluid in terms of equation of state containing physical parameters
S. B. Khasare. Chin. Phys. B, 2015, 24(1): 015101.
[10] Modified 2CLJDQP model and the second virial coefficients for linear molecules
Zhang Ying (张颖), Wang Sheng (王升), He Mao-Gang (何茂刚). Chin. Phys. B, 2014, 23(12): 125101.
[11] The mass limit of white dwarfs with strong magnetic fields in general relativity
Wen De-Hua (文德华), Liu He-Lei (刘荷蕾), Zhang Xiang-Dong (张向东). Chin. Phys. B, 2014, 23(8): 089501.
[12] The stability of a non-extensive relativistic Fermi system
Wang Hai-Tang(王海堂), Men Fu-Dian(门福殿), He Xiao-Gang(何晓刚), and Wei Qun-Mei(隗群梅) . Chin. Phys. B, 2012, 21(6): 060501.
[13] Equation of state for pure fluids at critical temperature
S. B. Khasare . Chin. Phys. B, 2012, 21(4): 045102.
[14] Perturbation and variational approach for the equation of state for hard-sphere and Lennard–Jones fluids
S. B. Khasare . Chin. Phys. B, 2012, 21(4): 045103.
[15] Entropy and weak solutions in the lattice Bhatnagar–Gross–Krook model
Ran Zheng(冉政) and Xu Yu-Peng(许宇鹏) . Chin. Phys. B, 2011, 20(11): 114702.
No Suggested Reading articles found!