Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 047302    DOI: 10.1088/1674-1056/21/4/047302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The influence of interfacial barrier engineering on the resistance switching of In2O3:SnO2/TiO2/In2O3:SnO2 device

Liu Zi-Yu(刘紫玉), Zhang Pei-Jian(张培健), Meng Yang(孟洋), Li Dong(李栋), Meng Qing-Yu(孟庆宇), Li Jian-Qi(李建奇), and Zhao Hong-Wu(赵宏武)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The I-V characteristics of In2O3:SnO2/TiO2/In2O3:SnO2 junctions with different interfacial barriers are investigated by comparing experiments. A two-step resistance switching process is found for samples with two interfacial barriers produced by specific thermal treatment on the interfaces. The nonsynchronous occurrence of conducting filament formation through the oxide bulk and the reduction in the interfacial barrier due to the migration of oxygen vacancies under the electric field is supposed to explain the two-step resistive switching process. The unique switching properties of the device, based on interfacial barrier engineering, could be exploited for novel applications in nonvolatile memory devices.
Keywords:  resistance switching      interfacial Schottky barrier      oxygen vacancy      two-step switching  
Received:  28 October 2011      Revised:  09 November 2011      Accepted manuscript online: 
PACS:  73.40.-c (Electronic transport in interface structures)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2009CB930803), the National Natural Science Foundation of China (Grant No. 10834012), and the Innovation Foundation of the Chinese Academy of Sciences (Grant No. KJCX2-YW-W24).
Corresponding Authors:  Zhao Hong-Wu,hwzhao@iphy.ac.cn     E-mail:  hwzhao@iphy.ac.cn

Cite this article: 

Liu Zi-Yu(刘紫玉), Zhang Pei-Jian(张培健), Meng Yang(孟洋), Li Dong(李栋), Meng Qing-Yu(孟庆宇), Li Jian-Qi(李建奇), and Zhao Hong-Wu(赵宏武) The influence of interfacial barrier engineering on the resistance switching of In2O3:SnO2/TiO2/In2O3:SnO2 device 2012 Chin. Phys. B 21 047302

[1] Waser R and Aono M 2007 Nature Materials 6 833
[2] Sawa A 2008 Materials Today 11 28
[3] Kyung Min Kim, Doo Seok Jeong and Cheol Seong Hwang 2011 Nanotechnology 22 254002
[4] Liao Z L, Wang Z Z, Meng Y, Liu Z Y, Gao P, Gang J L, Zhao H W, Liang X J, Bai X D and Chen D M 2009 Appl. Phys. Lett. 94 253503
[5] Li Y, Zhao G Y, Su J, Shen E F and Ren Y 2011 Appl. Phys. A 104 1069-1073
[6] Oh S C, Jung H Y and Lee H 2011 J. Appl. Phys. 109 124511
[7] Blom P W M, Wolf R M, Cillessen J F M and Krijin M P C M 1994 Phys. Rev. Lett. 73 2107
[8] Sawa A, Fujii T, Kawasaki M and Tukura Y 2004 Appl. Phys. Lett. 85 4073
[9] Jeong H Y, Lee J Y and Choi S Y 2010 Adv. Funct. Mater. 20 3912
[10] Lee M D, Ho C H and Yao Y D 2011 IEEE Transactions on Magnetic 47 3
[11] Muenstermann R, Menke T, Dittmann R and Waser R 2010 Adv. Mater. 22 4819
[12] Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W and Chen D M 2010 Chin. Phys. B 19 037304
[13] Yang J J, Pickett M D, Li X, Ohlberg D A A, Stewart D R and Williams R S 2008 Nanotechnol. 3 429
[14] Chung Y L, Lai P Y, Chen Y C and Chen J S 2011 Appl. Mater. Interfaces 3 1918
[15] Park W Y, Kim G H, Seok J Y, Kim K M, Song S J, Lee M H and Hwang C S 2010 Nanotechnology 21 195201
[16] Knauth P and Tuller H L 1999 J. Appl. Phys. 85 897
[17] Rhoderick E H and Williams R H 1988 Metal-Semiconductor Contacts 2nd edn. (Oxford: Clarendon)
[18] Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N and William R S 2009 Nanotechnology 20 215201
[19] Miao F, Yang J J and Borghetti J 2011 Nanotechnology 22 254007
[20] Jeong D S, Schroeder H, Breuer U and Waser R 2008 J. Appl. Phys. 104 123716
[1] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[2] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[3] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[4] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[5] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[6] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[7] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[8] A method of generating random bits by using electronic bipolar memristor
Bin-Bin Yang(杨彬彬), Nuo Xu(许诺), Er-Rui Zhou(周二瑞), Zhi-Wei Li(李智炜), Cheng Li(李成), Pin-Yun Yi(易品筠), Liang Fang(方粮). Chin. Phys. B, 2020, 29(4): 048505.
[9] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[10] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[11] Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 128101.
[12] Synergistic effects of electrical and optical excitations on TiO2 resistive device
Qi Mao(毛奇), Wei-Jian Lin(林伟坚), Ke-Jian Zhu(朱科建), Yang Meng(孟洋), Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2017, 26(8): 087702.
[13] Intrinsic luminescence centers in γ- and θ-alumina nanoparticles
Abdolvahab Amirsalari, Saber Farjami Shayesteh, Reza Taheri Ghahrizjani. Chin. Phys. B, 2017, 26(3): 036101.
[14] Electrical property effect of oxygen vacancies in the heterojunction of LaGaO3/SrTiO3
Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Xin-Miao Zhang(张鑫淼), Han-Zhang Liu(刘汉璋), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Wen-Bin Su(苏文斌), Liang-Mo Mei(梅良模). Chin. Phys. B, 2017, 26(3): 037101.
[15] First-principles study of strain effect on the formation and electronic structures of oxygen vacancy in SrFeO2
Wei Zhang(张玮), Jie Huang(黄洁). Chin. Phys. B, 2016, 25(5): 057103.
No Suggested Reading articles found!