Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 058101    DOI: 10.1088/1674-1056/28/5/058101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Two-step growth of VSe2 films and their photoelectric properties

Yu Zeng(曾玉)1, Shengli Zhang(张生利)1, Xiuling Li(李秀玲)1, Jianping Ao(敖建平)1, Yun Sun(孙云)1, Wei Liu(刘玮)1, Fangfang Liu(刘芳芳)1, Peng Gao(高鹏)2, Yi Zhang(张毅)1
1 Institute of Photoelectronic Thin Film Devices and Technology, Tianjin Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, China;
2 Tianjin Institute of Power Source, Tianjin 300384, China
Abstract  

We put forward a two-step route to synthesize vanadium diselenide (VSe2), a typical transition metal dichalcogenide (TMD). To obtain the VSe2 film, we first prepare a vanadium film by electron beam evaporation and we then perform selenization in a vacuum chamber. This method has the advantages of low temperature, is less time-consuming, has a large area, and has a stable performance. At 400 circC selenization temperature, we successfully prepare VSe2 films on both glass and Mo substrates. The prepared VSe2 has the characteristic of preferential growth along the c-axis, with low transmittance. It is found that the contact between Al and VSe2/Mo is ohmic contact. Compared to Mo substrate, lower square resistance and higher carrier concentration of the VSe2/Mo sample reveal that the VSe2 film may be a potential material for thin film solar cells or other semiconductor devices. The new synthetic strategy that is developed here paves a sustainable way to the application of VSe2 in photovoltaic devices.

Keywords:  two-step route      VSe2      selenization      thin film  
Received:  01 February 2019      Revised:  28 February 2019      Accepted manuscript online: 
PACS:  81.10.Pq (Growth in vacuum)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  81.15.Dj (E-beam and hot filament evaporation deposition)  
  81.20.-n (Methods of materials synthesis and materials processing)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51572132, 61674082, and 61774089), the National Key R&D Program of China (Grant No. 2018YFB1500202), Tianjin Natural Science Foundation of Key Project, China (Grant Nos. 18JCZDJC31200 and 16JCZDJC30700), Yang Fan Innovative and Entrepreneurial Research Team Project, China (Grant No. 2014YT02N037), 111 Project, China (Grant No. B16027), and the International Cooperation Base, China (Grant No. 2016D01025).

Corresponding Authors:  Yi Zhang     E-mail:  yizhang@nankai.edu.cn

Cite this article: 

Yu Zeng(曾玉), Shengli Zhang(张生利), Xiuling Li(李秀玲), Jianping Ao(敖建平), Yun Sun(孙云), Wei Liu(刘玮), Fangfang Liu(刘芳芳), Peng Gao(高鹏), Yi Zhang(张毅) Two-step growth of VSe2 films and their photoelectric properties 2019 Chin. Phys. B 28 058101

[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O and Kis A 2017 Nat. Rev. Mater. 2 17033
[2] Tan C, Lai Z and Zhang H 2017 Adv. Mater. 29 1701392
[3] Lin X and Wang J 2017 Acta Chim. Sin. 75 979
[4] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 9439
[5] Zhao W, Dong B, Guo Z L, Su G, Gao R J, Wang W and Cao L X 2016 Chem. Commun. (Camb) 52 9228
[6] Xu K, Chen P Z, Li X L, Wu C Z, Guo Y Q, Zhao J Y, Wu X J and Xie Y 2013 Angew Chem. Int. Ed Eng. 52 10477
[7] Marri S R, Ratha S, Rout C S and Beheraet J N 2017 Chem. Commun. (Camb) 53 228
[8] Vatansever E, Sarikurt S and Evans R F L 2018 Mater. Res. Express 5 046108
[9] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzillet Ma 2018 Nat. Nanotechnol 13 289
[10] Zhang Z P, Niu J J, Yang P F, Gong Y, Ji Q Q, Shi J P, Fang Q Y, Jiang S L, Li H, Zhou X B, Gu L, Wu X S and Zhang Y F 2017 Adv. Mater. 29 1702359
[11] Hayashi K and Nakahira M 1978 J. Soild State Chem. 24 153 Hayashi K and Nakahira M 1978 J.Solid State Chem. 24 153
[12] Whittingham M S 1978 Mat. Res. Bull. 13 959
[13] Nikonov K S, Brekhovskikh M N, Egorysheva A V, Menshchikova T K and Fedorovet V A 2017 Inorg. Mater. 53 1126
[14] Yang J Y, Wang W K, Liu Y, Du H F, Ning W, Zheng G L, Jin C, Han Y Y, Wang N, Yang Z R, Tian M L and Zhang Y H 2014 Appl. Phys. Lett. 105 063109
[15] Claessen R, Schafert I and Skibowski M 1990 J. Phys.: Condens. Matter 2 10045
[16] Hossain M, Wu J X, Wen W, Liu H N, Wang X S and Xie L M 2018 Adv. Mater. Interfaces 5 1800528
[17] Wang C L, Wu X, Ma Y H, Mu G, Li Y Y, Luo C, Xu H J, Zhang Y Y, Yang J, Tang X D, Zhang J, Bao W Z and Duan C G 2018 J. Mater. Chem. A 6 8299
[18] Hector A L, Jura K, Levason W, Reid S D and Reidet G 2009 New J. Chem. 33 641
[19] Zhang Z P, Gong Y, Zou X L, Liu P, Yang P F, Shi J P, Zhao L Y, Zhang Q, Gu L and Zhang Y F 2018 ACS Nano
[20] Lee S, Kim J, Park Y C and Chun S H 2019 Nanoscale 11 431
[21] Ming F W, Liang H F, Lei Y J, Zhang W L and Alshareef H N 2018 Nano Energy 53 11
[22] Lin H, He S J, Mao Z, Miao J, Xu M and Li Q 2017 Nanotechnology 28 445603
[23] Wang Y P, Qian B B, Li H H, Liu L, Chen L and Jiang H B 2015 Mater. Lett. 141 35
[24] Wang D L, Bai Z Z, Yang R L and Hou Z R 2013 Physics 42 346
[25] Gao S S, Jiang Z W, Wu L, Ao J P, Zeng Y, Sun Y and Zhang Y 2018 Chin. Phys. B 27 018803
[26] Liu Z L, Wu X, Shao Y, Qi J, Cao Y, Huang L, Liu C, Wang J O, Zheng Q, Zhu Z L, Ibrahim K, Wang Y L and Gao H J 2018 Sci. Bull. 63 419
[27] Ulusoy Ghobadi T, Patil B, Karadas F, Okyay A K and Yilmaz E 2017 ACS Omega. 2 8319
[28] Cao Q, Frank F Y, Lina S, Xiang F X, Liu G L and Wang X L 2017 Nanotechnology 28 475703
[1] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[2] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[3] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[4] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[5] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[6] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[7] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[8] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[9] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[10] Accurate capacitance-voltage characterization of organic thin films with current injection
Ming Chu(褚明), Shao-Bo Liu(刘少博), An-Ran Yu(蔚安然), Hao-Miao Yu(于浩淼), Jia-Jun Qin(秦佳俊), Rui-Chen Yi(衣睿宸), Yuan Pei(裴远), Chun-Qin Zhu(朱春琴), Guang-Rui Zhu(朱光瑞), Qi Zeng(曾琪), and Xiao-Yuan Hou(侯晓远). Chin. Phys. B, 2021, 30(8): 087301.
[11] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[12] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[13] Effect of hydrogen plasma implantation on the micro-structure and magnetic properties of hcp-Co8057Fe4Ir16 thin films
Hui Wang(王辉), Meng Wu(吴猛), Haiping Zhou(周海平), Bo Zhang(张博), Shixin Hu(胡世欣), Tianyong Ma(马天勇), Zhiwei Li(李志伟), Liang Qiao(乔亮), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2021, 30(5): 057505.
[14] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[15] Multi-layer structures including zigzag sculptured thin films for corrosion protection of AISI 304 stainless steel
Fateme Abdi. Chin. Phys. B, 2021, 30(3): 038106.
No Suggested Reading articles found!