Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 017803    DOI: 10.1088/1674-1056/20/1/017803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical parameters of Nd3+:Er3+:Yb3+ co-doped borosilicate glasses and their energy transfers at high temperature

Li Cheng-Ren(李成仁)a)†, Li Shu-Feng(李淑凤) b), Dong Bin(董斌)c), Cheng Yu-Qi(程宇琪)a), Yin Hai-Tao(殷海涛)a), Yang Jing(杨静)a), and Chen Yu(陈宇)a)
a College of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China; b School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China; c School of Science, Dalian Nationalities University, Dalian 116600, China
Abstract  This paper reports that a series of Nd3+:Er3+:Yb3+ co-doped borosilicate glasses have been prepared and their absorption spectra measured. The J–O intensity parameters Ωk (k=2, 4, 6), spontaneous radiative lifetime τrad, spontaneous transition probability A, fluorescence branching ratio β and oscillator strength fed of the Nd3+ ions at room temperature are calculated based on Judd–Ofelt (J–O) theory. The temperature dependence of the up-conversion photoluminescence characteristics in a Nd3+:Er3+:Yb3+ co-doped sample is studied under a 978 nm semiconductor laser excitation, and the energy transfer mechanisms among Yb3+, Er3+ and Nd3+ ions are analysed. The results show that the J–O intensity parameters Ω2 increase when the Nd3+ concentration of the Nd3+:Er3+:Yb3+ co-doped borosilicate glasses increases. The possibility of spontaneous transition is small and lifetimes are long at levels of 4F5/2 and 4F3/2. The intensity of Nd3+ emissions at 595, 691, 753, 813 and 887 nm are markedly enhanced when the sample temperature exceeds 400 K. The reasons being the cooperation of the secondary sensitization from Er3+ to Nd3+ and the contribution of a multi-phonon.
Keywords:  Nd3+:Er3+:Yb3+ co-doped borosilicate glasses      optical parameters      photoluminescence characteristics      high temperature  
Received:  08 June 2010      Revised:  20 July 2010      Accepted manuscript online: 
PACS:  78.55.Qr (Amorphous materials; glasses and other disordered solids)  
  38.80.Wr  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10804015) and the Education Department of Liaoning Province, China (Grant No. 2009A417).

Cite this article: 

Li Cheng-Ren(李成仁), Li Shu-Feng(李淑凤), Dong Bin(董斌), Cheng Yu-Qi(程宇琪), Yin Hai-Tao(殷海涛), Yang Jing(杨静), and Chen Yu(陈宇) Optical parameters of Nd3+:Er3+:Yb3+ co-doped borosilicate glasses and their energy transfers at high temperature 2011 Chin. Phys. B 20 017803

[1] Dong L Q, Huang S H, Wen H Y, Yang Y M, Wang D W and Duan X X 2009 Acta Phys. Sin. 58 8617 (in Chinese)
[2] Li C R, Dong B, Li S F and Song C L 2007 Chem. Phys. Lett. 443 426
[3] Chen G X, Zhang Q Y, Zhao C, Shi D M and Jiang Z H 2010 Acta Phys. Sin. 59 1321 (in Chinese)
[4] Song F, Han L, Zou C, Su J, Zhang K, Yan L and Tian J 2007 Appl. Phys. B 86 653
[5] Lupei V and Lupei A 2000 Phys. Rev. B 61 8087
[6] Aisaka T, Fujii M and Hayashi S 2008 Appl. Phys. Lett. 92 132105
[7] Huang Y H, Jiang D L, Zhang J X and Lin Q H 2010 Acta Phys. Sin. 59 300 (in Chinese)
[8] Sun J C, Bian J M, Liang H O, Zhao J Z, Hu L Z, Zhao Z W, Liu W F and Du G T 2007 Appl. Surf. Sci. 253 5161
[9] Weber M J 1971 Phys. Rev. B 4 3153
[10] de Sousa D F, Batalioto F, Bell M J V, Oliverira and Nunes L A O 2001 J. Appl. Phys. 90 3308
[11] da Gama A A S, de S'a G F, Porcher P and Caro P 1981 J. Chem. Phys. 75 2583
[12] Feng Y, Song F, Zhao L J, Zhang C B, Guo H C and Zhang G Y 2001 Acta Phys. Sin. 50 335 (in Chinese)
[13] Han X M and Wang G F 2002 Mat. Res. Innovat. 6 235
[14] Kumar G A, de Larosa R, Matinez A, Unnikrishna N V and Ueda K 2003 J. Phys. Chem. Solids 64 69
[15] Judd B R 1963 Phys. Rev. B 127 750
[16] Ofelt G S 1962 Chem. Phys. 37 551
[17] Weber M J 1967 Phys. Rev. 157 262
[18] Leavitt R P and Morrison C A 1980 J. Chem. Phys. 73 749
[19] Silva M C, Cristovan F H, Nascimento C M, Bell M J V, Cruz W O and Marletta A 2006 J. Non-Crystalline Solids 352 5296
[20] Choi J H, Alfred M, Ashot M and Shi F G 2005 J. Lumin. 114 167
[21] Fl'orez A, Mart'hinez J F, Fl'orez M and Porcher P 2001 J. Non-Crystalline Solids 284 261
[22] Li C R, Dong B, Li L and Lei M K 2008 Chin. Phys. B 17 224
[23] Singh A K, Rai S B, Rai D K and Singh V B 2006 Appl. Phys. B 82 289
[24] Dong B, Liu D P, Wang X J, Yang T, Miao S M and Li C R 2007 Appl. Phys. Lett. 90 181117
[25] Li C R, Li S F Li, Dong B, Liu Z F, Song C L and Yu Q X 2008 Sensors and Actuators B 134 313
[26] Jaque D, Ramirez M O, Baus'a L E, Sol'e G J, Cavalli E, Speghini A and Bettinelli M 2003 Phys. Rev. B 68 035118
[27] Vetrone F, Boyer J C and Capobianco J A 2004 J. Appl. Phys. 96 661
[28] Dong B, Cao B S, Feng Q Z, Wang X J, Li C R and Hua R N 2009 Sci. China Ser. G 52 1043
[29] Wade S A, Collins S F and Baxter G W 2003 J. Appl. Phys. 94 4743 endfootnotesize
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[3] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[4] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[5] Induced current of high temperature superconducting loops by combination of exciting coil and thermal switch
Jia-Wen Wang(王佳雯), Yin-Shun Wang(王银顺), Hua Chai(柴华), Ling-Feng Zhu(祝凌峰), and Wei Pi(皮伟). Chin. Phys. B, 2022, 31(3): 037402.
[6] Synthesis and study the influence of yttrium doping on band structure, optical, non-linear optical and dielectric results for Ca12Al14O33 (C12A7) single crystals grown using traveling-solvent floating zone (TSFZ) method
A. Abdel Moez, Ahmed I. Ali, and A. Tayel. Chin. Phys. B, 2022, 31(1): 018103.
[7] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[8] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[9] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[10] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[11] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[12] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[13] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[14] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[15] Compact ultra-narrowband superconducting filter using N-spiral resonator with open-loop secondary coupling structure
Lin Tao(陶琳), Bin Wei(魏斌), Xubo Guo(郭旭波), Hongcheng Li(李宏成), Chenjie Luo(骆晨杰), Bisong Cao(曹必松), Linan Jiang(姜立楠). Chin. Phys. B, 2020, 29(6): 068502.
No Suggested Reading articles found!