Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 017201    DOI: 10.1088/1674-1056/20/1/017201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Monte Carlo study of single-barrier structure based on exclusion model full counting statistics

Chen Hua(陈华), Du Lei(杜磊), Qu Cheng-Li(曲成立), He Liang(何亮), Chen Wen-Hao(陈文豪), and Sun Peng(孙鹏)
School of Technical Physics, Xidian University, Xi'an 710071, China
Abstract  Different from the usual full counting statistics theoretical work that focuses on the higher order cumulants computation by using cumulant generating function in electrical structures, Monte Carlo simulation of single-barrier structure is performed to obtain time series for two types of widely applicable exclusion models, counter-flows model, and tunnel model. With high-order spectrum analysis of Matlab, the validation of Monte Carlo methods is shown through the extracted first four cumulants from the time series, which are in agreement with those from cumulant generating function. After the comparison between the counter-flows model and the tunnel model in a single barrier structure, it is found that the essential difference between them consists in the strictly holding of Pauli principle in the former and in the statistical consideration of Pauli principle in the latter.
Keywords:  Monte Carlo simulation      higher order cumulant      exclusion model      full counting statistics  
Received:  29 March 2010      Revised:  07 September 2010      Accepted manuscript online: 
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  05.10.Ln (Monte Carlo methods)  

Cite this article: 

Chen Hua(陈华), Du Lei(杜磊), Qu Cheng-Li(曲成立), He Liang(何亮), Chen Wen-Hao(陈文豪), and Sun Peng(孙鹏) Monte Carlo study of single-barrier structure based on exclusion model full counting statistics 2011 Chin. Phys. B 20 017201

[1] Zhuang Y Q and Sun Q 1993 Noise and Minimising Technology in Semiconductor Devices (Beijing: National Defense Industry Press) p172 (in Chinese)
[2] Ciofi C and Neri B 2000 J. Phys. D: Appl. Phys. 33 R199
[3] Li W H, Zhuang Y Q, Du L and Bao J L 2009 Acta Phys. Sin. 58 7183 (in Chinese)
[4] Ma Z F, Zhang P, Wu Y, Li W H, Zhuang Y Q and Du L 2010 Chin. Phys. B 19 037201
[5] Kindermann M 2003 Electron Counting Statistics in Nanostructures (Ph.D. Thesis) (Leiden: Leiden University)
[6] Blanter Y M 2005 arXiv:cond-mat/0511478 [cond-mat.mes-hall]
[7] Flindt C, Novotny T, Braggio A and Jauho A P 2010 arXiv:1002.4506 [cond-mat.mes-hall]
[8] Roche P E, Derrida B and Douccot B 2005 Eur. Phys. J. B 43 529
[9] Chen H, Du L and Zhuang Y Q 2008 Acta Phys. Sin. 57 2438 (in Chinese) endfootnotesize
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[3] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[4] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[5] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[6] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[7] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[8] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[9] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[10] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[11] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[12] Variational and diffusion Monte Carlo simulations of a hydrogen molecular ion in a spherical box
Xuehui Xiao(肖学会), Kuo Bao(包括), Youchun Wang(王友春), Hui Xie(谢慧), Defang Duan(段德芳), Fubo Tian(田夫波), Tian Cui(崔田). Chin. Phys. B, 2019, 28(5): 056401.
[13] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[14] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[15] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
No Suggested Reading articles found!