Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 017102    DOI: 10.1088/1674-1056/20/1/017102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures and thermodynamic stabilities of aluminum-based deuterides from first principles calculations

Ye Xiao-Qiu(叶小球), Luo De-Li(罗德礼), Sang Ge(桑革), and Ao Bing-Yun(敖冰云)
Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, China
Abstract  The alanates (complex aluminohydrides) have relatively high gravimetric hydrogen densities and are among the most promising solid-state hydrogen-storage materials. In this work, the electronic structures and the formation enthalpies of seven typical aluminum-based deuterides have been calculated by the plane-wave pseudopotential method, these being AlD3, LiAlD4, Li3AlD6, BaAlD5, Ba2AlD7, LiMg(AlD4)3 and LiMgAlD6. The results show that all these compounds are large band gap insulators at 0 K with estimated band gaps from 2.31 eV in AlD3 to 4.96 eV in LiMg(AlD4)3. The band gaps are reduced when the coordination of Al varies from 4 to 6. Two peaks present in the valence bands are the common characteristics of aluminum-based deuterides containing AlD4 subunits while three peaks are the common characteristics of those containing AlD6 subunits. The electronic structures of these compounds are determined mainly by aluminum deuteride complexes (AlD4 or AlD6) and their mutual interactions. The predicted formation enthalpies are presented for the studied aluminum-based deuterides.
Keywords:  hydrogen storage material      complex aluminohydrides      electronic structures      density functional theory  
Received:  12 May 2010      Revised:  14 September 2010      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.20.Dg (Alkali and alkaline earth metals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 20971114).

Cite this article: 

Ye Xiao-Qiu(叶小球), Luo De-Li(罗德礼), Sang Ge(桑革), and Ao Bing-Yun(敖冰云) Electronic structures and thermodynamic stabilities of aluminum-based deuterides from first principles calculations 2011 Chin. Phys. B 20 017102

[1] Bogdanovic B and Schwickardi M 1997 J. Alloys Compd. 253 1
[2] Hauback B C 2008 Z. Kristallogr. 223 636
[3] Graetz J, Lee Y, Reilly J J, Park S and Vogt T 2005 Phys. Rev. B 71 184115
[4] Zhu G L, Shu D, Dai Y B, Sun B D and Wang J 2009 Acta Phys. Sin. 58 S210 (in Chinese)
[5] Chen L J, Hou Z F, Zhu Z Z and Yang Y 2003 Acta Phys. Sin. 52 2229 (in Chinese)
[6] Ashby E C, Sanders J R, Claudy P and Schwartz R D 1973 Inorg. Chem. 12 2860
[7] Zhou J J, Chen Y G, Wu C L, Zheng X, Fang Y C and Gao T 2009 Acta Phys. Sin. 58 4853
[8] Brinks H W, Hauback B C, Jensen C M and Zidan R 2005 J. Alloys Compd. 392 27
[9] Brinks H W, Istad-Lem A and Hauback B C 2006 J. Phys. Chem. B 110 25833
[10] Grove H, Brinks H W, Heyn R H, Wu F J, Opalka S M, Tang X, Laube B L and Hauback B C 2008 J. Alloys Compd. 455 249
[11] Grove H, Brinks H W, Lovvik O M, Heyn R H and Hauback B C 2008 J. Alloys Compd. 460 64
[12] Lovvik O M and Swang O 2005 J. Alloys Compd. 404 757
[13] Yoshino M, Komiya K, Takahashi Y, Shinzato Y, Yukawa H and Morinaga M 2005 J. Alloys Compd. 404 185
[14] Orgaz E, Membrillo A, Castaneda R and Aburto A 2005 J. Alloys Compd. 404--406 176
[15] Song Y, Singh R and Guo Z X 2006 J. Phys. Chem. B 110 6906
[16] Ke X Z, Kuwabara A and Tanaka I 2005 Phys. Rev. B 71 184107
[17] Wang Y, Yan J A and Chou M Y 2008 Phys. Rev. B 77 014101
[18] van Setten M J, Popa V A, de Wijs G A and Brocks G 2007 Phys. Rev. B 75 035204
[19] Klaveness A, Vajeeston P, Ravindran P, Fjellvaag H and Kjekshus A 2006 Phys. Rev. B 75 094122
[20] Zhang Q A, Nakamura Y, Oikawa K, Kamiyama T and Akiba E 2002 Inorg. Chem. 41 6941
[21] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[22] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Cond. Matt. 14 2717
[23] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[24] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[25] Hu C H, Chen D M, Wang Y M, Xu D S and Yang K 2007 Phys. Rev. B 75 224108
[26] Graetz J, Chaudhuri S, Lee Y, Vogt T, Muckerman J T and Reilly J J 2006 Phys. Rev. B 74 214114
[27] Sun S T, Ke X Z, Chen C F and Tanaka I 2009 Phys. Rev. B 79 0241041
[28] Brinks H W, Brown C, Jensen C M, Graetz J, Reilly J J and Hauback B C 2007 J. Alloys Compd. 441 364
[29] Haubacka B C, Brinks H W and Fjellv^ag H 2002 J. Alloys Compd. 346 184
[30] Brinks H W and Hauback B C 2003 J. Alloys Compd. 354 143
[31] Zhang Q A, Nakamura Y, Oikawa K, Kamiyama T and Akiba E 2003 J. Alloys Compd. 361 180
[32] Hauback B C, Brinks H W, Jensenb C M, Murphyb K and Maelanda A J 2003 J. Alloys Compd. 358 142
[33] Hauback B C, Brinks H W, Heyn R H, Blom R and Fjellvaag H 2005 J. Alloys Compd. 394 35
[34] Song Y and Guo Z X 2006 Phys. Rev. B 74 195120
[35] Singh D J 2005 Phys. Rev. B 71 216101
[36] Vajeeston P, Ravindran P, Kjekshus A and Fjellvag H 2005 Phys. Rev. B 71 216102
[37] Lovvik O M, Opalka S M, Brinks H W and Hauback B C 2004 Phys. Rev. B 69 134117
[38] Grochala W and Edwards P P 2004 Chem. Rev. 104 1283
[39] Miwa K, Ohba N, Towata S, Nakamori Y and Orimo S 2004 Phys. Rev. B 69 245120
[40] Graetz J, Reilly J J, Kulleck J G and Bowman R C 2007 J. Alloys Compd. 446 271
[41] Claudy P, Bonnetot B, Letoffe J M and Turck G 1978 Thermochim Acta 27 213
[42] Chen J, Kuriyama N, Xu Q, Takeshita H T and Sakai T 2001 J. Phys. Chem. B 105 11214
[43] Liu X F, Asano K, Sakaki K, Nakamura Y, Enoki H and Akiba E 2008 J. Phys. Chem. C 112 17423 endfootnotesize
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!