Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 096301    DOI: 10.1088/1674-1056/19/9/096301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Localized self-trapping in two-dimensional molecular lattice with interaction between Wannier–Mott excitons and phonon lattice

Xu Quan(徐权)a)b) and Tian Qiang(田强)b)
a Department of Physics, Daqing Normal University, Daqing 163712, China; b Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  We investigate the interactions of lattice phonons with Wannier–Mott exciton, the exciton that has a large radius in two-dimensional molecular lattice, by the method of continuum limit approximation, and obtain that the self-trapping can also appear in two-dimensional molecular lattice with a harmonic and nonlinear potential. The exciton effect on molecular lattice does not distort the molecular lattice but only makes it localized and the localization can also react, again through phonon coupling, to trap the energy and prevents its dispersion.
Keywords:  self-trapping      Wannier–Mott exciton      two-dimensional molecular lattice      phonon  
Received:  03 October 2009      Revised:  09 February 2010      Accepted manuscript online: 
PACS:  6320R  
  6320P  
  0547  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 1057400), and the Natural Science Foundation of Heilongjiang Province, China (Grant No. A200506).

Cite this article: 

Xu Quan(徐权) and Tian Qiang(田强) Localized self-trapping in two-dimensional molecular lattice with interaction between Wannier–Mott excitons and phonon lattice 2010 Chin. Phys. B 19 096301

[1] Davydov A S 1973 wxJ. Theor. Biol.38 559
[2] Davydov A S 1985 wxSolitons in Molecular System (Dordrecht: Reidel)
[3] Davydov A S 1991 wxSolitons in Molecular System 2nd Ed. (Dordrecht, Reidel) [1982 Usp. Fiz. Nauk. 25 898.]
[4] Davydov A S 1982 wxBiology and Quantum Mechanics (New York: Pergamon)
[5] Davydov A S 1974 wxBiofiz19 670 [1974 wxBiophys19 684]
[6] Davydov A S J 1977 wxTheor. Biol.66 379
[7] Davydov A S 1979 wxInt. J. Quantum Chem.16 5
[8] Landau L D 1933 wxPhys. Z. Sowjetunion3 664
[9] Pekar I 1954 wxUntersuchungen uber die Electronentheorie der kristalle (Berlin: Akadamie Verlag)
[10] Frohlich H 1952wx Proc. R. Soc. London A215 291
[11] Holstein T 1959 wxAnn. Phys.8 325
[12] Gerlach S and Lowen H 1991 wxRev. Mod. Phys.63 63
[13] Scott A C 1982 wxPhys. Rev. A26 570
[14] Lomdahl P S and Ker W C 1985 wxPhys. Rev. Lett.55 1235
[15] Wang X D, Brown D W, Lindenberg K and West B 1988 wxPhys. Rev. A37 3557
[16] Scott A 1992 wxPhys. Rep.217 1
[17] Kenkre V M, Raghavan S and Cruzeiro-Hansson L 1994 wxPhys. Rev. B49 9511
[18] Pang X F 1994 wxPhys. Rev. E49 4747
[19] Cruzeiro-Hansson L 1994 wxPhys. Rev. Lett.73 2927
[20] Pang X F 2000 wxPhys. Rev. E62 6989
[21] An Z, Li Z J, Liu Y and Li Y C 2000 wxChin. Phys.9 37
[22] Chu Q J, Yin H W and Weng Y X 2007 wxChin. Phys.16 3052
[23] Yang X, Xiang S H and Song K H 2008 wxChin. Phys. B17 435
[24] Gao K, Xie S J, Li Y, Yin S, Liu D S and Zhao X 2009 wxChin. Phys. B 18 2961
[25] Xu Q and Tian Q 2009 wxChin. Phys. B18 3940
[26] Xu Q and Tian Q 2004 wxActa. Phys. Sin.53 2811 (in Chinese)
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[4] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[5] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[6] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[7] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[8] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[9] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[10] Growth, characterization, and Raman spectra of the 1T phases of TiTe2, TiSe2, and TiS2
Xiao-Fang Tang(唐筱芳), Shuang-Xing Zhu(朱双兴), Hao Liu(刘豪), Chen Zhang(章晨), Qi-Yi Wu(吴旗仪), Zi-Teng Liu(刘子腾), Jiao-Jiao Song(宋姣姣), Xiao Guo(郭晓), Yong-Song Wang(王永松), He Ma(马赫), Yin-Zou Zhao(赵尹陬), Fan-Ying Wu(邬钒颖), Shu-Yu Liu(刘姝妤), Kai-Hui Liu(刘开辉), Ya-Hua Yuan(袁亚华), Han Huang(黄寒), Jun He(何军), Wen Xu(徐文), Hai-Yun Liu(刘海云), Yu-Xia Duan(段玉霞), and Jian-Qiao Meng(孟建桥). Chin. Phys. B, 2022, 31(3): 037103.
[11] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[12] Advances of phononics in 2012—2022
Ya-Fei Ding(丁亚飞), Gui-Mei Zhu(朱桂妹), Xiang-Ying Shen(沈翔瀛),Xue Bai(柏雪), and Bao-Wen Li(李保文). Chin. Phys. B, 2022, 31(12): 126301.
[13] Tunable terahertz acoustic-phonon emission from monolayer molybdenum disulfide
Cheng-Xiang Zhao(赵承祥), Miao-Miao Zheng(郑苗苗), Yuan Qie(郄媛), and Fang-Wei Han(韩方微). Chin. Phys. B, 2022, 31(12): 127202.
[14] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[15] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
No Suggested Reading articles found!