|
|
Fast generation of cluster states in a linear ion trap |
Xu You-Yang(徐酉阳)a)b), Zhou Fei(周飞)a)b), Zhang Xiao-Long(张小龙)c), and Feng Mang(冯芒)a)† |
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; b Graduate School of the Chinese Academy of Sciences, Beijing 100039, China; c Center for Modern Physics and Department of Physics, Chongqing University, Chongqing 400044, China |
|
|
Abstract We propose a practical scheme to generate cluster states by simultaneously accomplishing two-qubit conditional gating on an array of equidistant ions by using transverse modes. Our operation is robust to heating and insensitive to Lamb–Dicke parameter. Meanwhile, as it is carried out in a geometric quantum computing fashion, our scheme enables the fast and high-fidelity generation of cluster states. The experimental feasibility is discussed with sophisticated ion trap techniques.
|
Received: 26 November 2009
Revised: 28 January 2010
Accepted manuscript online:
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774163 and 10804132). |
Cite this article:
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Zhang Xiao-Long(张小龙), and Feng Mang(冯芒) Fast generation of cluster states in a linear ion trap 2010 Chin. Phys. B 19 090317
|
[1] |
Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
|
[2] |
Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312
|
[3] |
Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
|
[4] |
Raussendorf R, Browne D E and Briegel H J 2002 J. Mod. Opt. 49 1299
|
[5] |
Nielsen M A 2004 Phys. Rev. Lett. 93 040503
|
[6] |
Lin Z R, Guo G P, Tu T, Zhu F J and Guo G C 2008 Phys. Rev. Lett. bf 101 230501
|
[7] |
Tanamoto T, Liu Y X, Fujita S, Hu X D and Nori F 2006 Phys. Rev. Lett. bf 97 230501
|
[8] |
Cho J and Lee H W 2005 Phys. Rev. Lett. 95 160501
|
[9] |
Jia L J, Yang Z B, Wu H Z and Zheng S B 2008 Chin. Phys. B 17 4207
|
[10] |
Zhang X L, Feng M and Gao K L 2008 Chin. Phys. B 17 43
|
[11] |
Lin G W, Lin X M, Chen L B, Du Q H and Chen Z H 2008 Chin. Phys. B 17 64
|
[12] |
Mandel O, Greiner M, Widera A, Rom T, Hansh T W, Theodor W and Bloch I 2003 Nature (London) 425 937
|
[13] |
Tame M S, Prevedel R, Paternostro M, B"ohi P, Kim M S and Zeilinger A 2007 Phys. Rev. Lett. 98 140501
|
[14] |
Chen K, Li C M, Zhang Q, Chen Y A, Geobel A, Chen S, Mair A and Pan J W 2007 Phys. Rev. Lett. 99 120503
|
[15] |
Nielsen M A 2006 Rep. Math. Phys. 57 147
|
[16] |
Wunderlich H and Wunderlich C 2009 Phys. Rev. A 79 052324
|
[17] |
Cirac J I and Zoller P 1995 Phys. Rev. Lett. bf74 4091
|
[18] |
Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
|
[19] |
Gulde S, Riebe M, Lancaster P T, Becher C, Eschner J, H"afner H, Schmidt-Kaler F, Chuang I L and Blatt R 2003 Nature 421 48
|
[20] |
H"afner H, H"ansel W, Roos C F, Benhelm J, Chek-al-kar D, Chwalla M, K"orber T, Rapol U D, Riebe M, Schmidt P O, Becher C, G"uhne O, D"ur W and Blatt R 2005 Nature 438 643
|
[21] |
Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M and Monroe C 2007 Nature 449 68
|
[22] |
Leibfried D, DeMarco B, Meyer V, Rowe M, Ben-Kish A, Barrett M, Britton J, Hughes J, Itano W M, Jelenkovic B M, Langer C, Lucas D, Rosenband T and Wineland D 2003 J. Phys. B Atomic Molecular and Optical Physics 36 599
|
[23] |
Ivanov P A, Ivanov N V and Plenio M B 2008 Phys. Rev. A 78 012323
|
[24] |
Yang R C, Li H C, Lin X and Huang Z P 2007 Chin. Phys. bf16 2219
|
[25] |
Stock R and James D F V 2009 Phys. Rev. Lett. 102 170501
|
[26] |
Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 1897902
|
[27] |
Lin G D, Zhu S L, Islam R, Kim K, Chang M S, Korenblit S K, Monroe C and Duan L M 2009 Europhys. Lett. 86 60004
|
[28] |
James D F V 1998 Appl. Phys. B 66 181
|
[29] |
Enzer D G, Schauer M M, Gomez J J, Gulley M S, Holzscheiter M H, Kwait P G, Lamoreaux S K, Peterson C G, Sanderberg V D, Tupa D, White A G and Hughes R J 2000 Phys. Rev. Lett. 85 2466
|
[30] |
Lee P J, Brickman K A, Deslauriers L, Haljan P C, Duan L M and Monroe C 2005 J. Opt. B 7 S371
|
[31] |
Zhu S L, Monroe C and Duan L M 2006 Phys. Rev. Lett. 97 050505
|
[32] |
Home J P, McDonnell M J, Lucas D M, Imreh G, Keitch B C, Szwer D J, Thomas N R, Webster S C, Stacey D N and Steane A M 2006 New J. Phys. 8 188
|
[33] |
Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D and Monroe C 2000 Nature (London) 404 256
|
[34] |
Blinov B B, Moehring D L, Duan L M and Monroe C 2004 Nature (London) 428 153
|
[35] |
Johanning M, Braun A, Timoney N, Elman V, Neuhauser W and Wunderlich C 2009 Phys. Rev. Lett. 102 073004
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|