Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090317    DOI: 10.1088/1674-1056/19/9/090317
GENERAL Prev   Next  

Fast generation of cluster states in a linear ion trap

Xu You-Yang(徐酉阳)a)b), Zhou Fei(周飞)a)b), Zhang Xiao-Long(张小龙)c), and Feng Mang(冯芒)a)
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; b Graduate School of the Chinese Academy of Sciences, Beijing 100039, China; c Center for Modern Physics and Department of Physics, Chongqing University, Chongqing 400044, China
Abstract  We propose a practical scheme to generate cluster states by simultaneously accomplishing two-qubit conditional gating on an array of equidistant ions by using transverse modes. Our operation is robust to heating and insensitive to Lamb–Dicke parameter. Meanwhile, as it is carried out in a geometric quantum computing fashion, our scheme enables the fast and high-fidelity generation of cluster states. The experimental feasibility is discussed with sophisticated ion trap techniques.
Keywords:  preparation of cluster states      quantum computation      linear ion trap  
Received:  26 November 2009      Revised:  28 January 2010      Accepted manuscript online: 
PACS:  0367  
  4250  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774163 and 10804132).

Cite this article: 

Xu You-Yang(徐酉阳), Zhou Fei(周飞), Zhang Xiao-Long(张小龙), and Feng Mang(冯芒) Fast generation of cluster states in a linear ion trap 2010 Chin. Phys. B 19 090317

[1] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[2] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312
[3] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[4] Raussendorf R, Browne D E and Briegel H J 2002 J. Mod. Opt. 49 1299
[5] Nielsen M A 2004 Phys. Rev. Lett. 93 040503
[6] Lin Z R, Guo G P, Tu T, Zhu F J and Guo G C 2008 Phys. Rev. Lett. bf 101 230501
[7] Tanamoto T, Liu Y X, Fujita S, Hu X D and Nori F 2006 Phys. Rev. Lett. bf 97 230501
[8] Cho J and Lee H W 2005 Phys. Rev. Lett. 95 160501
[9] Jia L J, Yang Z B, Wu H Z and Zheng S B 2008 Chin. Phys. B 17 4207
[10] Zhang X L, Feng M and Gao K L 2008 Chin. Phys. B 17 43
[11] Lin G W, Lin X M, Chen L B, Du Q H and Chen Z H 2008 Chin. Phys. B 17 64
[12] Mandel O, Greiner M, Widera A, Rom T, Hansh T W, Theodor W and Bloch I 2003 Nature (London) 425 937
[13] Tame M S, Prevedel R, Paternostro M, B"ohi P, Kim M S and Zeilinger A 2007 Phys. Rev. Lett. 98 140501
[14] Chen K, Li C M, Zhang Q, Chen Y A, Geobel A, Chen S, Mair A and Pan J W 2007 Phys. Rev. Lett. 99 120503
[15] Nielsen M A 2006 Rep. Math. Phys. 57 147
[16] Wunderlich H and Wunderlich C 2009 Phys. Rev. A 79 052324
[17] Cirac J I and Zoller P 1995 Phys. Rev. Lett. bf74 4091
[18] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[19] Gulde S, Riebe M, Lancaster P T, Becher C, Eschner J, H"afner H, Schmidt-Kaler F, Chuang I L and Blatt R 2003 Nature 421 48
[20] H"afner H, H"ansel W, Roos C F, Benhelm J, Chek-al-kar D, Chwalla M, K"orber T, Rapol U D, Riebe M, Schmidt P O, Becher C, G"uhne O, D"ur W and Blatt R 2005 Nature 438 643
[21] Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M and Monroe C 2007 Nature 449 68
[22] Leibfried D, DeMarco B, Meyer V, Rowe M, Ben-Kish A, Barrett M, Britton J, Hughes J, Itano W M, Jelenkovic B M, Langer C, Lucas D, Rosenband T and Wineland D 2003 J. Phys. B Atomic Molecular and Optical Physics 36 599
[23] Ivanov P A, Ivanov N V and Plenio M B 2008 Phys. Rev. A 78 012323
[24] Yang R C, Li H C, Lin X and Huang Z P 2007 Chin. Phys. bf16 2219
[25] Stock R and James D F V 2009 Phys. Rev. Lett. 102 170501
[26] Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 1897902
[27] Lin G D, Zhu S L, Islam R, Kim K, Chang M S, Korenblit S K, Monroe C and Duan L M 2009 Europhys. Lett. 86 60004
[28] James D F V 1998 Appl. Phys. B 66 181
[29] Enzer D G, Schauer M M, Gomez J J, Gulley M S, Holzscheiter M H, Kwait P G, Lamoreaux S K, Peterson C G, Sanderberg V D, Tupa D, White A G and Hughes R J 2000 Phys. Rev. Lett. 85 2466
[30] Lee P J, Brickman K A, Deslauriers L, Haljan P C, Duan L M and Monroe C 2005 J. Opt. B 7 S371
[31] Zhu S L, Monroe C and Duan L M 2006 Phys. Rev. Lett. 97 050505
[32] Home J P, McDonnell M J, Lucas D M, Imreh G, Keitch B C, Szwer D J, Thomas N R, Webster S C, Stacey D N and Steane A M 2006 New J. Phys. 8 188
[33] Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D and Monroe C 2000 Nature (London) 404 256
[34] Blinov B B, Moehring D L, Duan L M and Monroe C 2004 Nature (London) 428 153
[35] Johanning M, Braun A, Timoney N, Elman V, Neuhauser W and Wunderlich C 2009 Phys. Rev. Lett. 102 073004
[1] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[2] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[3] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[4] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[5] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[6] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[7] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[8] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[9] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[10] Efficient self-testing system for quantum computations based on permutations
Shuquan Ma(马树泉), Changhua Zhu(朱畅华), Min Nie(聂敏), and Dongxiao Quan(权东晓). Chin. Phys. B, 2021, 30(4): 040305.
[11] Quantum algorithm for a set of quantum 2SAT problems
Yanglin Hu(胡杨林), Zhelun Zhang(张哲伦), and Biao Wu(吴飙). Chin. Phys. B, 2021, 30(2): 020308.
[12] Low-temperature environments for quantum computation and quantum simulation
Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙). Chin. Phys. B, 2021, 30(2): 020702.
[13] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[14] Quantum adiabatic algorithms using unitary interpolation
Shuo Zhang(张硕), Qian-Heng Duan(段乾恒), Tan Li(李坦), Xiang-Qun Fu(付向群), He-Liang Huang(黄合良), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(1): 010308.
[15] Novel quantum secret image sharing scheme
Gao-Feng Luo(罗高峰), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文). Chin. Phys. B, 2019, 28(4): 040302.
No Suggested Reading articles found!