|
|
Generation of GHZ state and cluster state with atomic ensembles via the dipole–blockade mechanism |
Ni Bin-Bin(倪彬彬)a), Gu Yong-Jian(顾永建)b), Chen Xiao-Dong(陈晓东)a), Liang Hong-Hui(梁鸿辉)a), Lin Xiu(林秀)a), and Lin Xiu-Min(林秀敏)a)† |
a School of Physics and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007, China; b Department of Physics, Ocean University of China, Qingdao 266100, China |
|
|
Abstract This paper proposes scalable schemes to generate the Greenberger–Horne–Zeilinger (GHZ) state and the cluster state with atomic ensembles via the dipole blockade mechanism on an atom chip, where the qubit is not carried by a single atom but an atomic ensemble. In the protocols, multiqubit entangled states are determinately prepared. Needlessness for single-photon source further decreases the complexity of the experiment. Based on the present laboratory technique, the schemes may be realized. The achieved results reveal a prospect for large-scale quantum communication and quantum computation.
|
Received: 22 October 2009
Revised: 19 December 2009
Accepted manuscript online:
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60878059, 10947147, 60677044, and 10574022), the Natural Science Foundation of Fujian Province of China (Grant No. 2007J0002). |
Cite this article:
Ni Bin-Bin(倪彬彬), Gu Yong-Jian(顾永建), Chen Xiao-Dong(陈晓东), Liang Hong-Hui(梁鸿辉), Lin Xiu(林秀), and Lin Xiu-Min(林秀敏) Generation of GHZ state and cluster state with atomic ensembles via the dipole–blockade mechanism 2010 Chin. Phys. B 19 090316
|
[1] |
Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
|
[2] |
Mermin N D 1990 Phys. Rev. Lett. 65 1838
|
[3] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W 1993 Phys. Rev. Lett. 70 1895
|
[4] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[5] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[6] |
Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648 bibitem6+1 Scarani V and Gisin N 2001 Phys. Rev. Lett. 87 117901
|
[7] |
Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
|
[8] |
Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
|
[9] |
Zheng S B 2006 Phys. Rev. A 73 065802
|
[10] |
Zhang X L, Gao K L and Feng M 2006 Phys. Rev. A 74 024303
|
[11] |
Zou X B and Mathis W 2005 Phys. Rev. A 72 013809
|
[12] |
Lin X, Li H C, Lin X M, Li X H, Li X H and Yang R C 2007 Chin. Phys. 16 1209
|
[13] |
Wang J, Yu L B and Ye L 2007 Chin. Phys. B 16 2211
|
[14] |
Huang X H, Lin X M, Lin G W, Chen Z H and Tang Y X 2008 Chin. Phys. B 17 4382
|
[15] |
Lu X S, Shi B S and Guo G C 2009 Chin. Phys. B 18 5133
|
[16] |
Lukin M D 2003 Rev. Mod. Phys. 75 457
|
[17] |
Duan L M 2002 Phys. Rev. Lett. 88 170402
|
[18] |
Ping D, Zheng Y X, Ming Y and Zhuo L C 2006 Phys. Rev. A 73 033818
|
[19] |
Zwierz M and Kok P 2009 Phys. Rev. A 79 022304
|
[20] |
Lukin M D, Fleischhauer M, Cate R, Duan L M, Jaksch D, Cirac J I and Zoller P 2001 Phys. Rev. Lett. 87 037901
|
[21] |
Jaksch D, Cirac J I, Zoller P, Rolston S L, Cote R and Lukin M D 2000 Phys. Rev. Lett. 85 2208
|
[22] |
Vogt T, Viteau M, Zhao J, Chotia A, Comparat D and Pillet P 2006 Phys. Rev. Lett. 97 083003
|
[23] |
Tong D, Farooqi S M, Stanojevic J, Krishnan S, Zhang Y P, C^ot'e R, Eyler E E and Gould P L 2004 Phys. Rev. Lett. 93 063001
|
[24] |
Singer K, Lamour M R, Amthor T, Marcassa L G and Weidem"uller M 2004 Phys. Rev. Lett. 93 163001
|
[25] |
Liebisch T C, Reinhard A, Berman P R and Raithel G 2005 Phys. Rev. Lett. 95 253002
|
[26] |
Anderson W R, Veale J R and Gallagher T F 1998 Phys. Rev. Lett. 80 249
|
[27] |
Mphi ller D, Madsen L B and Mphi lmer K 2008 Phys. Rev. Lett. 100 170504
|
[28] |
Brion E and Mphi lmer K 2007 Phys. Rev. Lett. 99 260501
|
[29] |
Tordrup K and Mphi lmer K 2008 Phys. Rev. A 77 020301
|
[30] |
Fort'ah J and Zimmermann C 2007 Rev. Mod. Phys. 79 235
|
[31] |
Folman R, Kruger P, Schmiedmayer J, Denschlag J and Henkel C 2002 Adv. At. Mol. Opt. Phys. 48 263
|
[32] |
Treutlein P, Hommelhoff P, Steinmetz T, Hansch T W and Reichel J 2004 Phys. Rev. Lett. 92 203005
|
[33] |
Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature (London) 414 413
|
[34] |
Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
|
[35] |
Barrett S D, Rohde P P and Stace T M 2008 arXiv:0804.0962v1
|
[36] |
Hammerer K, Sorensen A S and Polzik E S 2008 arXiv:0807.3358v2
|
[37] |
Walker T G and Saffman M 2005 J. Phys. B 38 S309
|
[38] |
Yan H, Yang G Q, Shi T, Wang J and Zhan M S 2008 Phys. Rev. A 78 034304
|
[39] |
Singh M, Volk M, Akulshin A, Sidorov A, McLean R and Hannaford P 2008 J. Phys. B 41 065301
|
[40] |
Lukin M D 2003 Rev. Mod. Phys. 75 457
|
[41] |
Hommelhoff P, Hansel W, Steinmetz T, Hansch T W and Reichel J 2005 New J. Phys. 7 3 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|