Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080517    DOI: 10.1088/1674-1056/19/8/080517
GENERAL Prev   Next  

Atomic force microscopy investigation of growth process of organic TCNQ aggregates on SiO2 and mica substrates

Huan Qing(郇庆), Hu Hao(胡昊), Pan Li-Da(潘理达), Xiao Jiang(肖江), Du Shi-Xuan(杜世萱), and Gao Hong-Jun(高鸿钧)
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule–molecule interaction. Finally, a phenomenal "two-branch" model is proposed to simulate the growth process of the seahorse pattern.
Keywords:  tetracyanoquinodimethane      organic molecule deposition      seahorse-like patterns  
Received:  26 January 2010      Revised:  04 February 2010      Accepted manuscript online: 
PACS:  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
  68.37.Ps (Atomic force microscopy (AFM))  
  68.55.A- (Nucleation and growth)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774176), and the National Basic Research Program of China (Grant No. 2006CB806202).

Cite this article: 

Huan Qing(郇庆), Hu Hao(胡昊), Pan Li-Da(潘理达), Xiao Jiang(肖江), Du Shi-Xuan(杜世萱), and Gao Hong-Jun(高鸿钧) Atomic force microscopy investigation of growth process of organic TCNQ aggregates on SiO2 and mica substrates 2010 Chin. Phys. B 19 080517

[1] B"ohringer M, Morgenstem K, Schneider W D, Berndt R, Mauri F, De Vita A and Car R 1999 Phys. Rev. Lett. 83 324
[2] Rosei F, Schunack M, Jiang P, Gourdon A, Laegsgaard E, Stensgaard I, Joachim C and Besenbacher F 2002 Science 296 328
[3] Theobald J A, Oxtoby N S, Phillips M A, Champness N R and Beton P H 2003 Nature 424 1029
[4] Gao H J, Sohlberg K, Xue Z Q, Chen H Y, Hou S M, Ma L P, Fang X W, Pang S J and Pennycook S J 2000 Phys. Rev. Lett. 84 1780
[5] Gao H J and Gao L 2010 Prog. Surf. Sci. 85 28
[6] Zhang Z Y and Lagally M G 1997 Science 276 377
[7] Heringdorf F J M Z, Reuter M C and Tromp R M 2001 Nature 412 517
[8] Verlaak S, Steudel S, Heremans P, Janssen D and Deleuze M S 2003 Phys. Rev. B 68 195409
[9] Kelley T W, Baude P F, Gerlach C, Ender D E, Muyres D, Haase M A, Vogel D E and Theiss S D 2004 Chem. Mater. 16 4413
[10] Cao G Y, Fang F, Ye C N, Xing X Y, Xu H H, Sun D L and Chen G R 2005 Micron 36 285
[11] Brechignac C, Cahuzac P, Carlier F, Colliex C, Leroux J, Masson A, Yoon B and Landman U 2002 Phys. Rev. Lett. 88 196103
[12] Buzio R, Boragno C, Biscarini F, De Mongeot F B and Valbusa U 2003 Nature Materials 2 233
[13] Pedersen J S and Carneiro K 1987 Rep. Prog. Phys. 50 995
[14] Mondio G, Neri F, Gurro G, Patane S and Compagnini G 1996 J. Mater. Res. 8 2627
[15] Ferraris J, Cowan D O, Walatka V and Perlstein J H 1973 J. Am. Chem. Soc. 95 948
[16] Ueda K, Sugimoto T, Endo S, Toyota N, Kohama M, Yamamoto K, Suenaga Y, Morimoto H, Yamaguchi T, Munakata M, Hosoito N, Kanehisa N, Shibamoto Y and Kai Y 1996 Chem. Phys. Lett. 261 295
[17] Gao H J, Xue Z Q and Wu Q D 1994 Chin. Phys. Lett. 11 766
[18] Gao H J, Xue Z Q and Pang S J 1996 J. Phys. D 29 1868
[19] Figgis B N, Sobolev A N, Kepert C J and Kurmoo M 2001 Acta Crystallogr. C 57 991
[20] Vickers E B, Giles I D and Miller J S 2005 Chem. Mater. 17 1667
[21] Ho K C and Liao J Y 2003 Sensor Actuat. B-Chem. 93 370
[22] Gao H J, Xue Z Q, Wu Q D and Pang S J 1994 J. Mater. Res. 9 2216
[23] Gao H J, Xue Z Q, Wu Q D and Pang S J 1996 Solid State Commun. 97 579
[24] Gao H J, Canright G S, Pang S J, Sandler I M, Xue Z Q and Zhang Z Y 1998 Fractals 6 337
[25] Sandler I M, Canright G S, Zhang Z Y, Gao H J, Xue Z Q and Pang S J 1998 Phys. Lett. A 245 233
[26] Sandler I M, Canright G S, Gao H J, Pang S J, Xue Z Q and Zhang Z Y 1998 Phys. Rev. E 58 6015
[27] Cai J M, Bao L H, Guo W, Cai L, Huan Q, Lian J C, Guo H M, Wang K Z, Shi D X, Pang S J and Gao H J 2007 Chin. Phys. Lett. 24 2918
[28] Cai J M, Zhang Y Y, Hu H, Bao L H, Pan L D, Tang W, Li G, Du S X, Shen J and Gao H J 2010 Chin. Phys. B 19 067101
[29] Qian C J, Li H, Zhong R, Luo M B and Ye G X 2009 Chin. Phys. B 18 1947
[30] Su Y F, Li P X, Chen P, Xu Z F and Zhang X L 2009 Acta Phys. Sin. 58 4531 (in Chinese)
[31] Coe S, Woo W K, Bawendi M and Bulovic V 2002 Nature 420 800
[32] Kobayashi S, Nishikawa T, Takenobu T, Mori S, Shimoda T, Mitani T, Shimotani H, Yoshimoto N, Ogawa S and Iwasa Y 2004 Nature Materials 3 317
[33] Street S C, Xu C and Goodman D W 1997 Ann. Rev. Phys. Chem. 48 43
[34] Hartman H, Sposito G and Yang A 1990 Clays and Clay Minerals 38 337
[1] Butt-joint regrowth method by MOCVD for integration of evanescent wave coupled photodetector and multi-quantum well semiconductor optical amplifier
Feng Xiao(肖峰), Qin Han(韩勤), Han Ye(叶焓), Shuai Wang(王帅), Zi-Qing Lu(陆子晴), and Fan Xiao(肖帆). Chin. Phys. B, 2022, 31(4): 048101.
[2] Semipolar (1122) and polar (0001) InGaN grown on sapphire substrate by using pulsed metal organic chemical vapor deposition
Sheng-Rui Xu(许晟瑞), Ying Zhao(赵颖), Ren-Yuan Jiang(蒋仁渊), Teng Jiang(姜腾), Ze-Yang Ren(任泽阳), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(2): 027801.
[3] Nanodots and microwires of ZrO2 grown on LaAlO3 by photo-assisted metal-organic chemical vapor deposition
Feng Guo(郭峰), Xin-Sheng Wang(汪薪生), Shi-Wei Zhuang(庄仕伟), Guo-Xing Li(李国兴), Bao-Lin Zhang(张宝林), Pen-Chu Chou(周本初). Chin. Phys. B, 2016, 25(2): 028103.
[4] High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal-organic chemical vapor deposition
Wang Lian-Kai (王连锴), Liu Ren-Jun (刘仁俊), Lü You (吕游), Yang Hao-Yu (杨皓宇), Li Guo-Xing (李国兴), Zhang Yuan-Tao (张源涛), Zhang Bao-Lin (张宝林). Chin. Phys. B, 2015, 24(1): 018102.
[5] Direct growth of graphene on gallium nitride by using chemical vapor deposition without extra catalyst
Zhao Yun (赵云), Wang Gang (王钢), Yang Huai-Chao (杨怀超), An Tie-Lei (安铁雷), Chen Min-Jiang (陈闽江), Yu Fang (余芳), Tao Li (陶立), Yang Jian-Kun (羊建坤), Wei Tong-Bo (魏同波), Duan Rui-Fei (段瑞飞), Sun Lian-Feng (孙连峰). Chin. Phys. B, 2014, 23(9): 096802.
[6] Nucleation of GaSb on GaAs (001) by low pressure metal-organic chemical vapor deposition
Wang Lian-Kai (王连锴), Liu Ren-Jun (刘仁俊), Yang Hao-Yu (杨皓宇), Lü You (吕游), Li Guo-Xing (李国兴), Zhang Yuan-Tao (张源涛), Zhang Bao-Lin (张宝林). Chin. Phys. B, 2014, 23(8): 088110.
[7] Improvement in a-plane GaN crystalline quality using wet etching method
Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Zhao Yi (赵一), Xue Jun-Shuai (薛军帅), Ha Wei (哈微), Zhang Shuai (张帅), Cui Pei-Shui (崔培水), Wen Hui-Juan (温慧娟), Chen Xing (陈兴). Chin. Phys. B, 2014, 23(4): 047804.
[8] Surface saturation control on the formation of wurtzite polytypes in zinc blende SiC nanofilms grown on Si-(100) substrates
Liu Xing-Fang (刘兴昉), Sun Guo-Sheng (孙国胜), Liu Bin (刘斌), Yan Guo-Guo (闫果果), Guan Min (关敏), Zhang Yang (张杨), Zhang Feng (张峰), Dong Lin (董林), Zheng Liu (郑柳), Liu Sheng-Bei (刘胜北), Tian Li-Xin (田丽欣), Wang Lei (王雷), Zhao Wan-Shun (赵万顺), Zeng Yi-Ping (曾一平). Chin. Phys. B, 2013, 22(8): 086802.
[9] Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering
Wang Dang-Hui (王党会), Xu Sheng-Rui (许晟瑞), Hao Yue (郝跃), Zhang Jin-Cheng (张进成), Xu Tian-Han (许天旱), Lin Zhi-Yu (林志宇), Zhou Hao (周昊), Xue Xiao-Yong (薛晓咏 ). Chin. Phys. B, 2013, 22(2): 028101.
[10] Influence of double AlN buffer layers on the qualities of GaN films prepared by metal–organic chemical vapour deposition
Lin Zhi-Yu (林志宇), Zhang Jin-Cheng (张进成), Zhou Hao (周昊), Li Xiao-Gang (李小刚), Meng Fan-Na (孟凡娜), Zhang Lin-Xia (张琳霞), Ai Shan (艾姗), Xu Sheng-Rui (许晟瑞), Zhao Yi (赵一), Hao Yue (郝跃). Chin. Phys. B, 2012, 21(12): 126804.
[11] The influence of SixNy interlayer on GaN film grown on Si(111) substrate
Peng Dong-Sheng (彭冬生), Chen Zhi-Gang (陈志刚), Tan Cong-Cong (谭聪聪). Chin. Phys. B, 2012, 21(12): 128101.
[12] Luminescence of a GaN grain with a nonpolar and semipolar plane in relation to microstructural characterization
Zhou Xiao-Wei(周小伟), Xu Sheng-Rui(许晟瑞), Zhang Jin-Cheng(张进成), Dang Ji-Yuan(党纪源), LŰ Ling(吕玲), Hao Yue(郝跃), and Guo Li-Xin(郭立新) . Chin. Phys. B, 2012, 21(6): 067803.
[13] Temperature dependences of Raman scattering in different types of GaN epilayers
Xue Xiao-Yong(薛晓咏), Xu Sheng-Rui(许晟瑞), Zhang Jin-Cheng(张进成), Lin Zhi-Yu(林志宇), Ma Jun-Cai(马俊彩), Liu Zi-Yang(刘子扬), Xue Jun-Shuai(薛军帅), and Hao Yue(郝跃) . Chin. Phys. B, 2012, 21(2): 027803.
[14] Stress and morphology of a nonpolar a-plane GaN layer on r-plane sapphire substrate
Xu Sheng-Rui(许晟瑞), Hao Yue(郝跃), Zhang Jin-Cheng(张进成), Xue Xiao-Yong(薛晓咏), Li Pei-Xian(李培咸), Li Jian-Ting(李建婷), Lin Zhi-Yu(林志宇), Liu Zi-Yang(刘子扬), Ma Jun-Cai(马俊彩), He Qiang(贺强), and Lü Ling(吕玲) . Chin. Phys. B, 2011, 20(10): 107802.
[15] Gradual variation method for thick GaN heteroepitaxy by hydride vapour phase epitaxy
Du Yan-Hao(杜彦浩), Wu Jie-Jun(吴洁君), Luo Wei-Ke(罗伟科), John Goldsmith, Han Tong(韩彤), Tao Yue-Bin(陶岳彬), Yang Zhi-Jian(杨志坚), Yu Tong-Jun(于彤军), and Zhang Guo-Yi(张国义) . Chin. Phys. B, 2011, 20(9): 098101.
No Suggested Reading articles found!