|
|
Atomic force microscopy investigation of growth process of organic TCNQ aggregates on SiO2 and mica substrates |
Huan Qing(郇庆), Hu Hao(胡昊), Pan Li-Da(潘理达), Xiao Jiang(肖江), Du Shi-Xuan(杜世萱), and Gao Hong-Jun(高鸿钧)† |
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule–molecule interaction. Finally, a phenomenal "two-branch" model is proposed to simulate the growth process of the seahorse pattern.
|
Received: 26 January 2010
Revised: 04 February 2010
Accepted manuscript online:
|
PACS:
|
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
68.55.A-
|
(Nucleation and growth)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774176), and the National Basic Research Program of China (Grant No. 2006CB806202). |
Cite this article:
Huan Qing(郇庆), Hu Hao(胡昊), Pan Li-Da(潘理达), Xiao Jiang(肖江), Du Shi-Xuan(杜世萱), and Gao Hong-Jun(高鸿钧) Atomic force microscopy investigation of growth process of organic TCNQ aggregates on SiO2 and mica substrates 2010 Chin. Phys. B 19 080517
|
[1] |
B"ohringer M, Morgenstem K, Schneider W D, Berndt R, Mauri F, De Vita A and Car R 1999 Phys. Rev. Lett. 83 324
|
[2] |
Rosei F, Schunack M, Jiang P, Gourdon A, Laegsgaard E, Stensgaard I, Joachim C and Besenbacher F 2002 Science 296 328
|
[3] |
Theobald J A, Oxtoby N S, Phillips M A, Champness N R and Beton P H 2003 Nature 424 1029
|
[4] |
Gao H J, Sohlberg K, Xue Z Q, Chen H Y, Hou S M, Ma L P, Fang X W, Pang S J and Pennycook S J 2000 Phys. Rev. Lett. 84 1780
|
[5] |
Gao H J and Gao L 2010 Prog. Surf. Sci. 85 28
|
[6] |
Zhang Z Y and Lagally M G 1997 Science 276 377
|
[7] |
Heringdorf F J M Z, Reuter M C and Tromp R M 2001 Nature 412 517
|
[8] |
Verlaak S, Steudel S, Heremans P, Janssen D and Deleuze M S 2003 Phys. Rev. B 68 195409
|
[9] |
Kelley T W, Baude P F, Gerlach C, Ender D E, Muyres D, Haase M A, Vogel D E and Theiss S D 2004 Chem. Mater. 16 4413
|
[10] |
Cao G Y, Fang F, Ye C N, Xing X Y, Xu H H, Sun D L and Chen G R 2005 Micron 36 285
|
[11] |
Brechignac C, Cahuzac P, Carlier F, Colliex C, Leroux J, Masson A, Yoon B and Landman U 2002 Phys. Rev. Lett. 88 196103
|
[12] |
Buzio R, Boragno C, Biscarini F, De Mongeot F B and Valbusa U 2003 Nature Materials 2 233
|
[13] |
Pedersen J S and Carneiro K 1987 Rep. Prog. Phys. 50 995
|
[14] |
Mondio G, Neri F, Gurro G, Patane S and Compagnini G 1996 J. Mater. Res. 8 2627
|
[15] |
Ferraris J, Cowan D O, Walatka V and Perlstein J H 1973 J. Am. Chem. Soc. 95 948
|
[16] |
Ueda K, Sugimoto T, Endo S, Toyota N, Kohama M, Yamamoto K, Suenaga Y, Morimoto H, Yamaguchi T, Munakata M, Hosoito N, Kanehisa N, Shibamoto Y and Kai Y 1996 Chem. Phys. Lett. 261 295
|
[17] |
Gao H J, Xue Z Q and Wu Q D 1994 Chin. Phys. Lett. 11 766
|
[18] |
Gao H J, Xue Z Q and Pang S J 1996 J. Phys. D 29 1868
|
[19] |
Figgis B N, Sobolev A N, Kepert C J and Kurmoo M 2001 Acta Crystallogr. C 57 991
|
[20] |
Vickers E B, Giles I D and Miller J S 2005 Chem. Mater. 17 1667
|
[21] |
Ho K C and Liao J Y 2003 Sensor Actuat. B-Chem. 93 370
|
[22] |
Gao H J, Xue Z Q, Wu Q D and Pang S J 1994 J. Mater. Res. 9 2216
|
[23] |
Gao H J, Xue Z Q, Wu Q D and Pang S J 1996 Solid State Commun. 97 579
|
[24] |
Gao H J, Canright G S, Pang S J, Sandler I M, Xue Z Q and Zhang Z Y 1998 Fractals 6 337
|
[25] |
Sandler I M, Canright G S, Zhang Z Y, Gao H J, Xue Z Q and Pang S J 1998 Phys. Lett. A 245 233
|
[26] |
Sandler I M, Canright G S, Gao H J, Pang S J, Xue Z Q and Zhang Z Y 1998 Phys. Rev. E 58 6015
|
[27] |
Cai J M, Bao L H, Guo W, Cai L, Huan Q, Lian J C, Guo H M, Wang K Z, Shi D X, Pang S J and Gao H J 2007 Chin. Phys. Lett. 24 2918
|
[28] |
Cai J M, Zhang Y Y, Hu H, Bao L H, Pan L D, Tang W, Li G, Du S X, Shen J and Gao H J 2010 Chin. Phys. B 19 067101
|
[29] |
Qian C J, Li H, Zhong R, Luo M B and Ye G X 2009 Chin. Phys. B 18 1947
|
[30] |
Su Y F, Li P X, Chen P, Xu Z F and Zhang X L 2009 Acta Phys. Sin. 58 4531 (in Chinese)
|
[31] |
Coe S, Woo W K, Bawendi M and Bulovic V 2002 Nature 420 800
|
[32] |
Kobayashi S, Nishikawa T, Takenobu T, Mori S, Shimoda T, Mitani T, Shimotani H, Yoshimoto N, Ogawa S and Iwasa Y 2004 Nature Materials 3 317
|
[33] |
Street S C, Xu C and Goodman D W 1997 Ann. Rev. Phys. Chem. 48 43
|
[34] |
Hartman H, Sposito G and Yang A 1990 Clays and Clay Minerals 38 337
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|