CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Surface saturation control on the formation of wurtzite polytypes in zinc blende SiC nanofilms grown on Si-(100) substrates |
Liu Xing-Fang (刘兴昉), Sun Guo-Sheng (孙国胜), Liu Bin (刘斌), Yan Guo-Guo (闫果果), Guan Min (关敏), Zhang Yang (张杨), Zhang Feng (张峰), Dong Lin (董林), Zheng Liu (郑柳), Liu Sheng-Bei (刘胜北), Tian Li-Xin (田丽欣), Wang Lei (王雷), Zhao Wan-Shun (赵万顺), Zeng Yi-Ping (曾一平) |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract We investigate the formations of wurtzite (WZ) SiC nano polytypes in zinc blende (ZB) SiC nanofilms hetero-grown on Si-(100) substrates via low pressure chemical vapor deposition (LPCVD) by adjusting the Si/C ratio of the introduced precursors. Through SEM, TEM, and Raman characterizations, we find that the nanofilms consist of discrete WZ SiC nano polytypes and ZB SiC polytypes composed of WZ polytypes (WZ+ZB) and disordered ZB SiC polytypes, respectively, according to Si/C ratios of 0.5, 1.5, and 3. We attribute the WZ polytype formation to being due to a kinetic mechanism based on the Si/C surface saturation control.
|
Received: 30 December 2012
Revised: 07 March 2013
Accepted manuscript online:
|
PACS:
|
68.55.-a
|
(Thin film structure and morphology)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
81.07.Bc
|
(Nanocrystalline materials)
|
|
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61274007) and the Beijing Natural Science Foundation, China (Grant No. 4132074). |
Corresponding Authors:
Liu Xing-Fang
E-mail: liuxf@mail.semi.ac.cn
|
Cite this article:
Liu Xing-Fang (刘兴昉), Sun Guo-Sheng (孙国胜), Liu Bin (刘斌), Yan Guo-Guo (闫果果), Guan Min (关敏), Zhang Yang (张杨), Zhang Feng (张峰), Dong Lin (董林), Zheng Liu (郑柳), Liu Sheng-Bei (刘胜北), Tian Li-Xin (田丽欣), Wang Lei (王雷), Zhao Wan-Shun (赵万顺), Zeng Yi-Ping (曾一平) Surface saturation control on the formation of wurtzite polytypes in zinc blende SiC nanofilms grown on Si-(100) substrates 2013 Chin. Phys. B 22 086802
|
[1] |
Kojima K, Okumura H, Kuroda S and Arai K 2004 J. Crystal Growth 269 367
|
[2] |
Liu K X, Stahlbush R E, Lew K K, Myers-Ward R L, Vanmil B L, Gaskill K D and Eddy C R 2008 J. Electron. Mater. 37 730
|
[3] |
Sun G S, Liu X F, Wu H L, Yan G G, Dong L, Zheng L, Zhao W S, Wang L, Zeng Y P, Li X G and Wang Z G 2011 Chin. Phys. B 20 033301
|
[4] |
Sun J W, Ivanov I G, Liljedahl R, Yakimova R and Syvajarvi M 2012 Appl. Phys. Lett. 100 252101
|
[5] |
Saito E, Filimonov S and Suemitsu M 2010 Mater. Sci. Forum. 645-648 147
|
[6] |
Das H, Melnychuk G and Koshka Y 2010 J. Crystal Growth 312 1912
|
[7] |
Kotamraju S, Krishnan B, Melnychuk G and Koshka Y 2010 J. Crystal Growth 312 645
|
[8] |
Kim B, Coy J, Kim S and Capano M 2009 J. Electron. Mater. 38 581
|
[9] |
Teker K, Jacob C, Chung J and Hong M H 2000 Thin Solid Films 371 53
|
[10] |
Steckl A J, Yuan C, Li J P and Loboda M J 1993 Appl. Phys. Lett. 63 3347
|
[11] |
Cloitre T, Moreaud N, Vicente P, Sadowski M L and Aulombard R L 2001 Mater. Sci. Forum. 353-356 159
|
[12] |
Li W, Dimitrijev S, Jisheng H, Iacopi A, Hold L, Tanner P and Harrison H B 2011 Thin Solid Films 519 6443
|
[13] |
Liu X F, Sun G S, Zhao Y M, Ning J, Li J Y, Wang L, Zhao W S, Luo M C and Li J M 2007 Mater. Sci. Forum 556-557 109
|
[14] |
Hassan J, Bergman J P, Henry A and Janzen E 2008 J. Crystal Growth 310 4424
|
[15] |
Hori T, Danno K and Kimoto T 2007 J. Crystal Growth 306 297
|
[16] |
Leone S, Pedersen H, Henry A, Kordina O and Janzen E 2009 J. Crystal Growth 312 24
|
[17] |
Li J, Batoni P and Tsu R 2010 Thin Solid Films 518 1658
|
[18] |
Habermehl S, Rodriguez M and Simmons B 2012 J. Appl. Phys. 112 013535
|
[19] |
Sun G S, Liu X F, Wang L, Zhao W S, Yang T, Wu H L, Yan G G, Zhao Y M, Ning J, Zeng Y P and Li J M 2010 Chin. Phys. B 19 088101
|
[20] |
Zhao Y M, Sun G S, Ning J, Liu X F, Zhao W S, Wang L and Li J M 2008 Chin. Phys. Lett. 25 2269
|
[21] |
Joyce H J, Wong-Leung J, Gao Q, Tan H H and Jagadish C 2010 Nano Lett. 10 908
|
[22] |
Verheijen M A, Algra R E, Borgstrom M T, Immink G, Sourty E, van Enckevort W J P, Vlieg E and Bakkers E P A M 2007 Nano Lett. 7 3051
|
[23] |
Intarasiri S, Hallen A, Lu J, Jensen J, Yu L D, Bertilsson K, Wolborski M, Singkarat S and Possnert G 2007 Appl. Surf. Sci. 253 4836
|
[24] |
Zhang X, Li L, Skowronski M, Sumakeris J J, Paisley M J and O'Loughlin M J 2009 J. Appl. Phys. 105 123529
|
[25] |
Nishimura T, Satoh M, Jinushi T, Saitou Y and Nakamura T 2012 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 272 422
|
[26] |
Lebedev A A 2006 Semicond. Sci. Technol. 21 R17
|
[27] |
Nakashima S and Harima H 1997 Phys. Status Solidi A: Appl. Res. 162 39
|
[28] |
Temple P A and Hathaway C E 1973 Phys. Rev. B 7 3685
|
[29] |
Rohmfeld S, Hundhausen M, Ley L, Zorman C A and Mehregany M 2002 J. Appl. Phys. 91 1113
|
[30] |
Perova T S, Wasyluk J, Kukushkin S A, Osipov A V, Feoktistov N A and Grudinkin S A 2010 Nanoscale Res. Lett. 5 1507
|
[31] |
Fissel A 2003 Phys. Rep. 379 149
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|