Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080308    DOI: 10.1088/1674-1056/19/8/080308
GENERAL Prev   Next  

Internal cancellation of spikes using two avalanche photodiodes in series for single photon detection

Liu Yun(刘云), Wu Qing-Lin(吴青林), Han Zheng-Fu(韩正甫), Dai Yi-Min(戴逸民), and Guo Guang-Can(郭光灿)
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
Abstract  We propose a method of improving the performance of InGaAs/InP avalanche photodiodes by using two avalanche photodiodes in series as single photon detectors for 1550-nm wavelength. In this method, the raw single photon avalanche signals are not attenuated, thus a high signal-to-noise ratio can be obtained compared with the existing results. The performance of the scheme is investigated and the ratio of the dark count rate to the detection efficiency is obtained to be 1.3×10-4 at 213 K.
Keywords:  quantum information      quantum key distribution      single photon detection      single photon counting  
Received:  05 November 2007      Revised:  14 April 2009      Accepted manuscript online: 
PACS:  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
Fund: Project supported by the National Major Fundamental Research Program of China (Grant No. 2006CB921900), the Knowledge Innovation Project of the Chinese Academy of Sciences, and the National Natural Science Foundation of China (Grant Nos. 60537020 and 60121503).

Cite this article: 

Liu Yun(刘云), Wu Qing-Lin(吴青林), Han Zheng-Fu(韩正甫), Dai Yi-Min(戴逸民), and Guo Guang-Can(郭光灿) Internal cancellation of spikes using two avalanche photodiodes in series for single photon detection 2010 Chin. Phys. B 19 080308

[1] Levine B F, Bethea C G and Campbell J C 1985 wxAppl. Phys. Lett.46 333
[2] Scholder F, Gautier J D, Wegmuller M and Gisin N 2002 wxOpt. Commun.213 57
[3] Buttler W T, Hughes R J, Kwiat P G, Lamoreaux S K, Luther G G, Morgan G L, Nordholt J E, Peterson C G and Simmons C M 1998 wxPhys. Rev. Lett.81 3283
[4] Zbinden H, Gautier J D, Gisin N, Huttner B, Muller A and Tittel W 1997 wxElectron. Lett.33 586
[5] Mrolla J M, Mazurenko Y, Goedgebuer J P, Porte H and Rhodes W T 1999 wxOpt. Lett.24 104
[6] Owens P C M, Rarity J G, Tapster P R, Knight D and Townsend P D 1994 wxAppl. Opt.33 6895
[7] Lacaita A L, Francese P A, Zappa F and Cova S 1994 wxAppl. Opt.33 6902
[8] Kang Y, Mages P, Clawson A R, Yu P K L, Bitter M, Pan Z, Pauchard A, Hummel S and Lo Y H 2002 wxIEEE Photon. Technol. Lett.14 1593
[9] Karve G, Zheng X G, Zhang X F, Li X W, Li N, Wang S L, Ma F, Jr A H, Campbell J C, Kinsey G S, Boisvert J C, Isshiki T D, Sudharsanan R, Bethune D S and Risk W P 2003 wxIEEE J. Quantum Electron.39 1281
[10] Jhee Y, Campbell J, Ferguson J, Dentai A and Holden W 1986 wxIEEE J. Quantum Electron.22 753
[11] Lacaita A L, Francese P A, Zappa F and Cova S 1996 wxAppl. Opt.35 2986
[12] Ribordy G, Gisin N, Guinnard O, Stucki D, Wegm"uller M and Zbinden H 2004 wxJ. Mod. Opt.51 1381
[13] http://www.iet.ntnu.no/groups/optics/qcr/torbjoern/
[14] Bethune D S, Navarro M and Risk W P 2000 wxIEEE J. Quantum Electron.36 340
[15] Tomita A and Nakamura K 2002 wxOpt. Lett.27 1827
[16] Yoshizawa A, Kaji R and Tsuchida H 2004 wxAppl. Phys. Lett.84 3606
[17] Namekata N, Sasamori S and Inoue S 2006 wxOpt. Express14 10043
[18] Gui Y Z, Mo X F, Han Z F and Guo G C 2004 wxActa Sin. Quantum Opt.10 131 (in Chinese)
[19] Mo X F, Zhu B, Han Z F, Gui Y Z and Guo G C 2005 wxOpt. Lett.30 2632
[20] Lutkenhaus N 1996 wxPhys. Rev. A54 97
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[5] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[6] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[9] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[10] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[11] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[12] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[13] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[14] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[15] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
No Suggested Reading articles found!