Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077304    DOI: 10.1088/1674-1056/19/7/077304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

InP-based InGaAs/InAlGaAs digital alloy quantum well laser structure at 2 μm

Gu Yi(顾溢), Wang Kai(王凯), Li Yao-Yao(李耀耀), Li Cheng(李成), and Zhang Yong-Gang(张永刚)
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract  The structural and optical characteristics of InP-based compressively strained InGaAs quantum wells have been significantly improved by using gas source molecular beam epitaxy grown InAs/In0.53Ga0.47As digital alloy triangular well layers and tensile In0.53Ga0.47As/InAlGaAs digital alloy barrier layers. The x-ray diffraction and transmission electron microscope characterisations indicate that the digital alloy structures present favourable lattice quality. Photoluminescence (PL) and electroluminescence (EL) measurements show that the use of digital alloy barriers offers better optical characteristics than that of conventional random alloy barriers. A significantly improved PL signal of around 2.1 μ m at 300 K and an EL signal of around 1.95 μ m at 100 K have been obtained.
Keywords:  InP-based      digital alloy      lasers      strained materials  
Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  78.67.De (Quantum wells)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  68.55.-a (Thin film structure and morphology)  
  78.55.Cr (III-V semiconductors)  
  78.60.Fi (Electroluminescence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60876034) and the National Basic Research Program of China (Grant No. 2006CB604903).

Cite this article: 

Gu Yi(顾溢), Wang Kai(王凯), Li Yao-Yao(李耀耀), Li Cheng(李成), and Zhang Yong-Gang(张永刚) InP-based InGaAs/InAlGaAs digital alloy quantum well laser structure at 2 μm 2010 Chin. Phys. B 19 077304

[1] Mattiello M, Nikl`es M, Schilt S, Thévenaz K, Salhi A, Barat D, Vicet A, Rouillard Y, Werner R and Koeth J 2006 Spectrochim. Acta A 63 952
[2] Jean B and Bende T 2003 Topics Appl. Phys. 89 511
[3] Kim J G, Shterengas L, Martinelli R U, Belenky G L, Garbuzov D Z and Chan W K 2002 Appl. Phys. Lett. 81 3146
[4] Zhang Y G, Zheng Y L, Lin C, Li A Z and Liu S 2006 Chin. Phys. Lett. 23 2262
[5] O'Brien K, Sweeney S J, Adams A R, Murdin B N, Salhi A, Rouillard Y and Joullié A 2006 Appl. Phys. Lett. 89 051104
[6] Zhang Y, Zhang Y and Zeng Y P 2008 Chin. Phys. B 17 4645
[7] Forouhar S, Ksendzov A, Larsson A and Temkin H 1992 Electron. Lett. 28 1431
[8] Zheng L, Lin C H, Singer K E and Missous M 1997 IEE Proc. Optoelectron. 144 360
[9] Sato T, Mitsuhara M, Nunoya N, Fujisawa T, Kasaya K, Kano F and Kondo Y 2008 IEEE Photon. Technol. Lett. 20 1045
[10] Gu Y, Zhang Y G and Liu S 2007 Chin. Phys. Lett. 24 3237
[11] Gu Y and Zhang Y G 2008 Chin. Phys. Lett. 25 726
[12] Gu Y, Zhang Y G, Wang K, Li A Z and Li Y Y 2009 J. Cryst. Growth 311 1935
[13] Zhang Y J, Chang B K, Yang Z, Niu J and Zou J J 2009 Chin. Phys. B 18 4541
[14] Mourad C, Gianardi D, Malloy K J and Kaspi R 2000 J. Appl. Phys. 10 5543
[15] Plis E, Rotella P, Raghavan S, Dawson L R, Krishna S, le D and Morath C P 2003 Appl. Phys. Lett. 82 1658
[16] Zhang Y G, Li A Z and Chen J X 1996 IEEE Photon. Technol. Lett. 8 830 endfootnotesize
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[3] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[4] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[5] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[8] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[9] A 795 nm gain coupled distributed feedback semiconductor laser based on tilted waveguides
De-Zheng Ma(马德正), Yong-Yi Chen(陈泳屹), Yu-Xin Lei(雷宇鑫), Peng Jia(贾鹏), Feng Gao(高峰), Yu-Gang Zeng(曾玉刚), Lei Liang(梁磊), Yue Song(宋悦), Chun-Kao Ruan(阮春烤), Xia Liu(刘夏), Li Qin(秦莉), Yong-Qiang Ning(宁永强), and Li-Jun Wang(王立军). Chin. Phys. B, 2021, 30(5): 050505.
[10] Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[11] A fast and precise three-dimensional measurement system based on multiple parallel line lasers
Yao Wang(王尧) and Bin Lin(林斌). Chin. Phys. B, 2021, 30(2): 024201.
[12] Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm
Huan Wang(王欢), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Zeng-Hui Gu(顾增辉), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(12): 124202.
[13] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[14] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
[15] Influences of increasing gate stem height on DC and RF performances of InAlAs/InGaAs InP-based HEMTs
Zhi-Hang Tong(童志航), Peng Ding(丁芃), Yong-Bo Su(苏永波), Da-Hai Wang(王大海), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(1): 018501.
No Suggested Reading articles found!