Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 074213    DOI: 10.1088/1674-1056/19/7/074213
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Photonic band structures of quadrangular multiconnected networks

Song Huan-Huan(宋欢欢) and Yang Xiang-Bo(杨湘波)
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
Abstract  By means of the network equation and generalized dimensionless Floquet—Bloch theorem, this paper investigates the properties of the band number and width for quadrangular multiconnected networks (QMNs) with a different number of connected waveguide segments (NCWSs) and various matching ratio of waveguide length (MRWL). It is found that all photonic bands are wide bands when the MRWL is integer. If the integer attribute of MRWL is broken, narrow bands will be created from the wide band near the centre of band structure. For two-segment-connected networks and three-segment-connected networks, it obtains a series of formulae of the band number and width. On the other hand, it proposes a so-called concept of two-segment-connected quantum subsystem and uses it to discuss the complexity of the band structures of QMNs. Based on these formulae, one can dominate the number, width and position of photonic bands within designed frequencies by adjusting the NCWS and MRWL. There would be potential applications for designing optical switches, optical narrow-band filters, dense wavelength-division-multiplexing devices and other correlative waveguide network devices.
Keywords:  multiconnected network      waveguide      photonic band structure  
Received:  23 October 2009      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974061) and the Program for Innovative Research Team of the Higher Education in Guangdong of China (Grant No. 06CXTD005).

Cite this article: 

Song Huan-Huan(宋欢欢) and Yang Xiang-Bo(杨湘波) Photonic band structures of quadrangular multiconnected networks 2010 Chin. Phys. B 19 074213

[1] %1 John S 1987 Phys. Rev. Lett. 58 2486
[2] %2 Yablovitch E 1987 Phys. Rev. Lett. 58 2059
[3] %3 Lin S Y, Chow E, Hietala V, Villeneuve P R and Joannopoulos J D 1998 Science 282 274
[4] %4 Noda S, Tomoda K, Yamamoto N and Chutinan A 2000 Science 289 604
[5] %5 Ogawa S, Imada M, Yoshimoto S, Okano M and Noda S 2004 Science 305 227
[6] %6 Vlasov Y A, O'Boyle M, Hamann H F and McNab S J 2005 Nature 438 65
[7] %7 Du X Y, Zheng W H, Zhang Y J, Ren G, Wang K, Xing M X and Cheng L H 2008 Acta Phys. Sin. 57 7005 (in Chinese)
[8] %8 Lin Z Q, Feng T H, Dai Q F, Wu L J and Lan S 2009 Chin. Phys. B 18 2383
[9] %9 Yablovitch E 1993 J. Opt. Soc. Am. B 10 283
[10] %10 Al-Wahsh H, El Boudouti E H, Djafari-Rouhani B, Akjouj A and Dobrzynski L 2007 Phys. Rev. B 75 125313
[11] %11 Cheng S S M, Li L M, Chan C T and Zhang Z Q 1999 Phys. Rev. B 59 4091
[12] %12 Chan T Y M and John S 2008 Phys. Rev. A 78 033812
[13] %13 McGurn A R 2000 Phys. Rev. B 61 13235
[14] %14 Kang X L, Li G and Li Y 2009 J. Opt. Soc. Am. B 26 60
[15] %15 Kocaman S, Chatterjee R, Panoiu N C, McMillan J F, Yu M B, Osgood R M, Kwong D L and Wong C W 2009 Phys. Rev. Lett. 102 203905
[16] %16 Schneider G J, Hanna S, Davis J L and Watson G H 2001 J. Appl. Phys. 90 2642
[17] %17 Noda S, Chutinan A and Imada M 2000 Nature 407 608
[18] %18 Apalkov V M 2008 J. Phys. Condens. Matter 20 275221
[19] %19 Zhang Z Q, Wong C C, Fung K K, Ho Y L, Chan W L, Kan S C, Chan T L and Cheung N 1998 Phys. Rev. Lett. 81 5540
[20] %20 Dobrzynski L, Akjouj A, Djafari-Rouhani B, Vasseur J O and Zemmouri J 1998 Phys. Rev. B 57 R9388
[21] %21 Cheung S K, Chan T L, Zhang Z Q and Chan C T 2004 Phys. Rev. B 70 125104
[22] %22 Wang Z Y and Yang X B 2007 Phys. Rev. B 76 235104
[23] %23 Mir A, Akjouj A, Vasseur J O, Djafari-Rouhani B, Fettouhi N, Boudouti E H El, Dobrzynski L and Zemmouri J 2003 J. Phys. Condens. Matter 15 1593
[24] %24 Stoytchev M and Genack A Z 1997 Phys. Rev. B 55 R8617
[25] %25 Bianucci P, Fietz C R, Robertson J W, Shvets G and Shih C K 2008 Phys. Rev. A 77 053816
[26] %26 Ak"ozbek N and John S 1998 Phys. Rev. E 58 3876
[27] %27 Zhang Z Q and Sheng P 1994 Phys. Rev. B 49 83 endfootnotesize
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[5] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[6] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[7] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[8] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[9] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[10] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[11] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[12] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[13] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[14] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[15] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
No Suggested Reading articles found!