Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 127809    DOI: 10.1088/1674-1056/19/12/127809
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Morphology and photoluminescence of BaAl12O19:Mn2+ green phosphor prepared by flux method

Zhou Jun(周峻), Wang Yu-Hua(王育华), Liu Bi-Tao(刘碧桃), and Liu Ji-Di(刘吉地)
Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  This paper reports that the green phosphor BaAl11.9O19:0.1Mn2+ is prepared by a flux assisted solid state reaction method. The effect of flux systems on the crystal structure, morphology and luminescent properties of the phosphor are studied in detail. The samples are characterized by the application of x-ray diffraction patterns, scanning electron microscopy patterns, luminescent spectra and decay curves. The results show that a pure phase BaAl12O19 can be achieved at the firing temperature above 1300 $^\circ$C by adding the proper flux system, the firing temperature is reduced at least 200 $^\circ$C in comparison with the conventional solid state reaction method. Maximum photoluminescence emission intensity is observed at 517 nm for (AlF3+Li2CO3) flux system under vacuum ultraviolet region (147 nm) excitation. The photoluminescence emission intensity and the decay time of these phosphor is found to be more superior to that of the corresponding sample prepared by the conventional solid state reaction method implying the suitability of this route for the preparation of display device worthy phosphor materials.
Keywords:  flux      BaAl12O19      green phosphor      vaccum ultraviolet  
Received:  11 April 2010      Revised:  03 May 2010      Accepted manuscript online: 
PACS:  61.66.Fn (Inorganic compounds)  
  78.55.Hx (Other solid inorganic materials)  
  81.10.Dn (Growth from solutions)  
Fund: Project supported by the Combination Foundation of Industry and Research by the Ministry of Education and Guangdong Province (Grant No. 0712226100023), Doctoral Program Foundation of Institutions of Higher Education of China (Grant No. 200807300010) and the National Natural Science Foundation of China (Grant No. 10874061).

Cite this article: 

Zhou Jun(周峻), Wang Yu-Hua(王育华), Liu Bi-Tao(刘碧桃), and Liu Ji-Di(刘吉地) Morphology and photoluminescence of BaAl12O19:Mn2+ green phosphor prepared by flux method 2010 Chin. Phys. B 19 127809

[1] Singh V, Chakradhar R P S, Rao J L and Kim D K 2008 J. Lumin. 128 1474
[2] Pike V, Patraw S, Diaz A L and DeBoer B G 2003 J. Solid State Chem. 173 359
[3] Blasse G and Grabmaier B C 1994 Luminescent Materials (Berlin: Springer-Verlag)
[4] Ronda C R 1997 J. Lumin. 49 72
[5] Sohn K S, Park E S, Kim C H and Park H D 2000 J. Electrochem. Soc. 147 4368
[6] Kang Y C, Chung Y S and Park S B 1999 J. Mater. Lett. 18 779
[7] Kahn A, Gbehi T, Thery J and Legendre J J 1998 J. Solid State Chem. 74 295
[8] Kang Y C, Chung Y S and Park S B 1999 J. Mater. Sci. Lett. 18 779
[9] Mahakhode J G, Dhoble S J, Joshi C P and Moharil S V 2007 it J. Alloys Compd. 438 293
[10] Wang Y H and Li F 2007 J. Lumin. 122 866
[11] Haranath D, Sharma Chander P H, Ali A, Bhalla N and Halder S K 2007 Mater. Chem. Phys. 101 163
[12] Bondioli F, Corradi A B and Manfredini T 2002 Chem. Mater. 12 324
[13] Deng C Y, He D W, Zhuang W D, Wang Y S, Kang K and Huang X W 2004 Chin. Phys. 13 473
[14] Zhou J, Wang Y H, Liu B T and Lu Y H 2009 J. Alloys Compd. 484 439
[15] Iyi N, Inouse Z, Takekawa S and Kimura S 1984 J. Solid State Chem. 52 66
[16] Shionoya S, Yen W M, Hase T, Kamiya S, Nakazawa E, Narita K, Ohno K, Weber M and Yamamoto H 2000 Phosphor Handbook (New York: CRC Press)
[17] Han S H and Kim Y J 2004 Korean J. Mater. Res. 14 529
[18] Jüstel T, Bechtel H, Mayr W and Wiechert D U 2003 J. Lumin. 104 137
[19] Jung K Y, Lee H W, Kang Y C, Park S B and Yang Y S 2005 Chem. Mater. 17 2729
[20] Tamatani M 1974 Jpn. J. Appl. Phys. 13 950
[21] Morell A and Khiati N E 1993 J. Electrochem. Soc. 140 2019
[22] Smets B M J and Verlijsdonk J G 1986 Mater. Res. Bull. 21 1305
[23] Bellotto M, Artioli G, Cristiani C, Forzatti P and Groppi G 1998 J. Catal. 179 597
[24] Stevels A L and Vink A T 1974 J. Lumin. 8 443
[25] Robbins D J, Mendez E E, Giess E A and Chang I F 1984 J. Electrochem. Soc. 131 141
[26] Dong G Y, Fu G S, Han L, Li X W, Wei Z R and Yang S P 2003 it Acta Phys. Sin. 52 745 (in Chinese)
[27] Barthou C, Benoit J, Benalloul P and Morell A 1994 J. Electrochem. Soc. 141 524
[28] Thiyagarajan P, Kottaisamy M and Ramachandra Raoa M S 2007 J. Electrochem. Soc. 154 H297
[29] Liao Q R, Zhang W D, Xia T, Liu R H, Hu Y S, Teng X M and Liu Y H 2009 Acta Phys. Sin. 58 2776 (in Chinese)
[1] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[2] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[3] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[4] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[5] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[6] Erratum to “Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux”
Swati Mukhopadhyay and Iswar Chandra Mandal. Chin. Phys. B, 2022, 31(5): 059902.
[7] Wire network behavior of superconducting films with lower symmetrical mesoscopic hole arrays
Wei-Gui Guo(郭伟贵), Zi-Xi Pei(裴子玺), and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2022, 31(3): 037405.
[8] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[9] Flux-to-voltage characteristic simulation of superconducting nanowire interference device
Xing-Yu Zhang(张兴雨), Yong-Liang Wang(王永良), Chao-Lin Lv(吕超林), Li-Xing You(尤立星), Hao Li(李浩), Zhen Wang(王镇), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2020, 29(9): 098501.
[10] Calculation of radiative heat flux on irregular boundaries in participating media
Yu-Jia Sun(孙玉佳) and Shu Zheng(郑树). Chin. Phys. B, 2020, 29(12): 124401.
[11] The landscape and flux of a minimum network motif, Wu Xing
Kun Zhang(张坤), Ashley Xia(夏月), and Jin Wang(汪劲). Chin. Phys. B, 2020, 29(12): 120504.
[12] Thermal stability and thermoelectric properties of Cd-doped nano-layered Cu2Se prepared using NaCl flux method
Jianhua Lu(陆建华), Decong Li(李德聪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Jiali Chen(陈家莉), Wen Ge(葛文), and Shukang Deng(邓书康). Chin. Phys. B, 2020, 29(12): 127403.
[13] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
[14] A passive source ranging method based on the frequency warping transform of the vertical intensity flux in shallow water
Yu-Bo Qi(戚聿波), Shi-Hong Zhou(周士弘), Meng-Xiao Yu(于梦枭), Shu-Yuan Du(杜淑媛), Mei Sun(孙梅), Ren-He Zhang(张仁和). Chin. Phys. B, 2019, 28(5): 054302.
[15] Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣). Chin. Phys. B, 2019, 28(3): 035203.
No Suggested Reading articles found!