Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 054302    DOI: 10.1088/1674-1056/28/5/054302
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A passive source ranging method based on the frequency warping transform of the vertical intensity flux in shallow water

Yu-Bo Qi(戚聿波)1, Shi-Hong Zhou(周士弘)1, Meng-Xiao Yu(于梦枭)1, Shu-Yuan Du(杜淑媛)1, Mei Sun(孙梅)2, Ren-He Zhang(张仁和)1
1 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physics and Electronic Engineering, Taishan University, Taian 271000, China
Abstract  The phase of cross-correlation function of two different normal modes contains source range information, which can be extracted by warping transform due to the dispersive characteristics of the shallow water waveguide. The autocorrelation function of the received pressure or particle velocity contains both modal autocorrelation component (MAC) and modal cross-correlation component (MCC), with the former part usually treated as interference for source ranging. Because the real part of the vertical intensity flux (RPVIF) only contains MCC, a passive impulsive source ranging method based on the frequency warping transform of RPVIF with a single vector receiver in shallow water is presented. Using a waveguide-invariant-based frequency warping operator, the cross-correlation components of two different modes in the vertical intensity flux are warped into separable impulsive sequences, the time delays of which are subsequently used for source ranging. The advantages of source ranging based on warping the vertical intensity flux compared with warping the pressure autocorrelation function are pointed out, and the experiment results are also presented.
Keywords:  passive source ranging      vertical intensity flux      frequency warping transform      normal mode  
Received:  23 November 2018      Revised:  25 February 2019      Accepted manuscript online: 
PACS:  43.30.Wi (Passive sonar systems and algorithms, matched field processing in underwater acoustics)  
  43.30.Bp (Normal mode propagation of sound in water)  
  43.60.Jn (Source localization and parameter estimation)  
Fund: Project supported by the Frontier Science Research Project of Chinese Academy of Sciences (Grant No. QYZDY-SSW-SLH005).
Corresponding Authors:  Yu-Bo Qi     E-mail:  qyb@mail.ioa.ac.cn

Cite this article: 

Yu-Bo Qi(戚聿波), Shi-Hong Zhou(周士弘), Meng-Xiao Yu(于梦枭), Shu-Yuan Du(杜淑媛), Mei Sun(孙梅), Ren-He Zhang(张仁和) A passive source ranging method based on the frequency warping transform of the vertical intensity flux in shallow water 2019 Chin. Phys. B 28 054302

[1] Jensen F B, Kuperman W A, Porter M B and Schmidt H 1994 Computational Ocean Acoustics (New York: AIP publishing)
[2] Bonnel J, Nicolas B, Mars J I and Walker S C 2010 J. Acoust. Soc. Am. 128 719
[3] Baraniuk R and Jones D 1995 IEEE Trans. Signal Process. 43 2269
[4] Bonnel J and Chapman N R 2011 J. Acoust. Soc. Am. 130 EL101
[5] Bonnel J, Dosso S E and Ross Chapman N 2013 J. Acoust. Soc. Am. 134 120
[6] Zeng J, Chapman N R and Bonnel J 2013 J. Acoust. Soc. Am. 134 EL394
[7] Bonnel J, Lin Y T, Eleftherakis D, Goff J A, Dosso S, Chapman R, Miller J H and Potty G R 2018 J. Acoust. Soc. Am. 143 EL405
[8] Zhou S H, Qi Y B and Ren Y 2014 Sci. Chin.: Ser. G 57 225
[9] Qi Y B, Zhou S H, Ren Y, Liu J J, Wang D J and Feng X Q 2015 Acta Acustica 40 144 (in Chinese)
[10] Bonnel J, Thode A, Blackwell S, Kim K and Macrander A 2014 J. Acoust. Soc. Am. 136 145
[11] Thode A, Bonnel J, Thieury M, Fagan A, Verlinden C, Wright D, Berchok C and Crance J 2017 J. Acoust. Soc. Am. 141 3059
[12] Qi Y B, Zhou S H, Zhang R H, Zhang B and Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese)
[13] Qi Y B, Zhou S H, Zhang R H and Ren Y 2015 J. Comput. Acoust. 23 1550003
[14] Qi Y B, Zhou S H and Zhang R H 2016 Acta Phys. Sin. 65 134301 (in Chinese)
[15] Qi Y B, Zhou S H, Zhang R H and Ren Y 2015 Acta Phys. Sin. 64 074301 (in Chinese)
[16] Zhu L M, Li F H, Sun M and Chen D S 2015 Acta Phys. Sin. 64 154303 (in Chinese)
[17] Ren Q Y, Hermand J P and Piao S C 2010 Oceans 2010 MTS/IEEE Seattle, September 20-23, 2010 Seattle, USA
[18] Grachev G A 1993 Acoust. Phys. 39 33
[1] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[2] Zero-point fluctuation of hydrogen bond in water dimer from ab initio molecular dynamics
Wan-Run Jiang(姜万润)†, Rui Wang(王瑞)†, Xue-Guang Ren(任雪光), Zhi-Yuan Zhang(张志远), Dan-Hui Li(李丹慧), and Zhi-Gang Wang(王志刚)‡. Chin. Phys. B, 2020, 29(10): 103101.
[3] Observation of double pseudowaves in an ion-beam-plasma system
Zi-An Wei(卫子安), Jin-Xiu Ma(马锦秀), Kai-Yang Yi(弋开阳). Chin. Phys. B, 2018, 27(8): 085201.
[4] Gravitational quasi-normal modes of static R2 Anti-de Sitter black holes
Hong Ma(马洪), Jin Li(李瑾). Chin. Phys. B, 2017, 26(6): 060401.
[5] Spatial correlation of the high intensity zone in deep-water acoustic field
Jun Li(李鋆), Zheng-Lin Li(李整林), Yun Ren(任云). Chin. Phys. B, 2016, 25(12): 124310.
[6] Investigation of long-range sound propagation in surface ducts
Duan Rui (段睿), Yang Kun-De (杨坤德), Ma Yuan-Liang (马远良). Chin. Phys. B, 2013, 22(12): 124301.
[7] The effect of fractional thermoelasticity on a two-dimensional problem of a mode I crack in a rotating fiber-reinforced thermoelastic medium
Ahmed E. Abouelregal, Ashraf M. Zenkour. Chin. Phys. B, 2013, 22(10): 108102.
[8] Mode-I crack in a two-dimensional fibre-reinforced generalized thermoelastic problem
Kh. Lotfy . Chin. Phys. B, 2012, 21(1): 014209.
[9] Determining the long living quasi-normal modes of relativistic stars
Lü Jun-Li(吕君丽) and Suen Wai-Mo(孙纬武) . Chin. Phys. B, 2011, 20(4): 040401.
[10] Normal mode splitting and ground state cooling in a Fabry–Perot optical cavity and transmission line resonator
Chen Hua-Jun(陈华俊) and Mi Xian-Wu(米贤武) . Chin. Phys. B, 2011, 20(12): 124203.
[11] Quasinormal modes of the scalar field in five-dimensional Lovelock black hole spacetime
Chen Ju-Hua(陈菊华) and Wang Yong-Jiu(王永久). Chin. Phys. B, 2010, 19(6): 060401.
[12] Asymptotic quasinormal modes of scalar field in a gravity's rainbow
Liu Cheng-Zhou(刘成周) and Zhu Jian-Yang(朱建阳). Chin. Phys. B, 2009, 18(10): 4161-4168.
[13] Quasinormal modes of a stationary axisymmetric EMDA black hole
Pan Qi-Yuan (潘启沅), Jing Ji-Liang (荆继良). Chin. Phys. B, 2006, 15(1): 77-82.
[14] Gravitational quasinormal modes of the Reissner--Nordström de Sitter black hole
Jing Ji-Liang (荆继良), Chen Song-Bai (陈松柏). Chin. Phys. B, 2005, 14(4): 683-689.
[15] Overtone spectrum of SiH stretching in H2SiCl2
Chen Ping (陈平), Zhu Huai (朱淮), Hao Lu-Yuan (郝绿原), Hu Shui-Ming (胡水明), Liu An-Wen (刘安雯), Zheng Jing-Jing (郑晶晶), Ding Yun (丁昀). Chin. Phys. B, 2005, 14(3): 634-641.
No Suggested Reading articles found!