Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 127803    DOI: 10.1088/1674-1056/19/12/127803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optimization and design of pigments for heat-insulating coatings

Wang Guang-Hai(王广海) and Zhang Yue(张跃)
Key Laboratory of Aerospace Materials and Performance, Ministry of Education, School of Materials Science and Engineering,Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract  This paper reports that heat insulating property of infrared reflective coatings is obtained through the use of pigments which diffuse near-infrared thermal radiation. Suitable structure and size distribution of pigments would attain maximum diffuse infrared radiation and reduce the pigment volume concentration required. The optimum structure and size range of pigments for reflective infrared coatings are studied by using Kubelka–Munk theory, Mie model and independent scattering approximation. Taking titania particle as the pigment embedded in an inorganic coating, the computational results show that core-shell particles present excellent scattering ability, more so than solid and hollow spherical particles. The optimum radius range of core-shell particles is around 0.3~1.6μm. Furthermore, the influence of shell thickness on optical parameters of the coating is also obvious and the optimal thickness of shell is 100–300 nm.
Keywords:  coating      engineering ceramics      scattering      pigments  
Received:  04 February 2010      Revised:  10 June 2010      Accepted manuscript online: 
PACS:  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  

Cite this article: 

Wang Guang-Hai(王广海) and Zhang Yue(张跃) Optimization and design of pigments for heat-insulating coatings 2010 Chin. Phys. B 19 127803

[1] Robert F B 1992 Prog. Org. Coat. 20 1
[2] Nilsson T M J and Niklasson G A 1995 Sol. Energy Mater. Sol. Cells 37 93
[3] Peng Y J, Zhang S P, Wang Y H and Yang Y Q 2008 Chin. Phys. B 17 3505
[4] Sliwinski T R, Pipoly R A and Blonski R P 2001 emphUS Patent 6174360B1
[5] Berdahl P 1995 Energy Build. 22 187
[6] Böhnke T and Henrik K 2008 Opt. Mater. 30 1410
[7] Naganuma T and Kagawa Y 2004wx Acta Mater. 52 5645
[8] Synnefa A, Santamouris M and Apostolakis K 2007 Sol. Energy 81 488
[9] Yang L L, He X D and He F 2008 Mater. Lett. 62 4539
[10] King D E and Caruso K 2007 48th AIAA/ASME/ AHS/ASC Structures, Structural Dynamics, and Materials Conference (Honolulu: Hawaii) p. 2129
[11] Yuen W W and Cunnington G 2007 J. Thermophys. Heat Transfer 21 105
[12] Xiong B T, Zhou B X, Bai J, Zheng Q, Liu Y B, Cai W M and Cai J 2008 Chin. Phys. B 17 3713
[13] Feng Y D, Wang Z M, Ma Y L and Zhang F J 2007 Chin. Phys. 16 1704
[14] Maheu B, Letoulouzan J N and Gouesbet G 1984 Appl. Opt. 23 3353
[15] Maheu B and Gouesbet G 1986 Appl. Opt. 25 1122
[16] Liu L Y, Gong R Z, Chen Y S, Zhang F G, He H H and Huang D X 2005 Opt. Express 13 10382
[17] Vargas W E and Niklasson G A 1997 Appl. Opt. 36 3735
[18] Vargas W E and Niklasson G A 1997 J. Opt. Soc. Am. A 14 2253
[19] Vargas W E 1999 J. Opt. Soc. Am. A 16 1362
[20] Bohren C F and Huffman D F 1983 Absorption and Scattering of Light by Small Particles (New York: Willey) p. 189
[21] Sun X M, Wang H H, Liu W Q and Shen J 2009 Chin. Phys. B 18 1040
[22] Johnson J A, Heidenreich J J and Mantz R A 2003wx Prog. Org. Coat. 47 432
[23] Baneshi M and Shigenao M 2009 J. Quantum Spectrosc. Radiat. Transfer 110 192
[24] Jaenicke W 1956 Z. Elektrochem. 60 163
[25] Matsumura K, Naganuma T and Kagawa Y 2003wx Adv. Eng. Mater. 5 226
[26] Huang X, Wang D M, Patnaid P and Singh J 2007 Mater. Sci. Eng. A 460 101
[27] Mie G 1908 Ann. Phys. 25 377
[28] Aden A L and Kerker M 1951 J. Appl. Phys. 22 1242
[29] Fuller K A 1993wx Opt. Lett. 18 257
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[5] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[6] High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system
Wenjia Yuan(袁文佳), Weidong Shen(沈伟东), Chen Xie(谢辰), Chenying Yang(杨陈楹), and Yueguang Zhang(章岳光). Chin. Phys. B, 2022, 31(8): 087801.
[7] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[8] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[9] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[10] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[11] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[12] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[13] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[14] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[15] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
No Suggested Reading articles found!