Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 127304    DOI: 10.1088/1674-1056/19/12/127304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Performance comparison of Pt/Au and Ni/Au Schottky contacts on AlxGa1-x N/GaN heterostructures at high temperatures

Lin Fang(林芳)a), Shen Bo(沈波)a),Lu Li-Wu(卢励吾)a), Ma Nan(马楠)a), Xu Fu-Jun(许福军)a), Miao Zhen-Lin(苗振林)a), Song Jie(宋杰)a), Liu Xin-Yu(刘新宇)b), Wei Ke(魏珂)b), and Huang Jun(黄俊)b)
a State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; b Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  In contrast with Au/Ni/Al0.25Ga0.75N/GaN Schottky contacts, this paper systematically investigates the effect of thermal annealing of Au/Pt/Al0.25Ga0.75N/GaN structures on electrical properties of the two-dimensional electron gas in Al0.25Ga0.75N/GaN heterostructures by means of temperature-dependent Hall and temperature-dependent current–voltage measurements. The two-dimensional electron gas density of the samples with Pt cap layer increases after annealing in N2 ambience at 600 $^\circ$C while the annealing treatment has little effect on the two-dimensional electron gas mobility in comparison with the samples with Ni cap layer. The experimental results indicate that the Au/Pt/Al0.25Ga0.75N/GaN Schottky contacts reduce the reverse leakage current density at high annealing temperatures of 400–600 $^\circ$C. As a conclusion, the better thermal stability of the Au/Pt/Al0.25Ga0.75N/GaN Schottky contacts than the Au/Ni/Al0.25Ga0.75N/GaN Schottky contacts at high temperatures can be attributed to the inertness of the interface between Pt and AlxGa1-xN.
Keywords:  gate leakage current      high temperature      Frenkel–Poole emission  
Received:  18 June 2010      Revised:  29 June 2010      Accepted manuscript online: 
PACS:  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60906041, 10774001, 60736033, and 60890193) and the National Basic Research Program of China (Grant Nos. 2006CB604908 and 2006CB921607).

Cite this article: 

Lin Fang(林芳), Shen Bo(沈波),Lu Li-Wu(卢励吾), Ma Nan(马楠), Xu Fu-Jun(许福军), Miao Zhen-Lin(苗振林), Song Jie(宋杰), Liu Xin-Yu(刘新宇), Wei Ke(魏珂), and Huang Jun(黄俊) Performance comparison of Pt/Au and Ni/Au Schottky contacts on AlxGa1-x N/GaN heterostructures at high temperatures 2010 Chin. Phys. B 19 127304

[1] Lin Z J, Kim H, Lee J and Lu W 2004 Appl. Phys. Lett. 84 1585
[2] Liu F, Wang T, Shen B, Huang S, Lin F, Ma N, Xu F J, Wang P and Yao J Q 2009 Chin. Phys. B 18 1614
[3] Miura N, Nanjo T, Suita M, Oishi T, Abe Y, Ozeki T, Ishikawa H, Egawa T and Jimbo T 2004 Solid-State Electron. 48 689
[4] Preble E A, Tracy K M, Kiesel S, McLean H, Miraglia P Q, Nemanich R J, Davis R F, Albrecht M and Smith D J 2002 J. Appl. Phys. 91 2133
[5] Liu F, Wang T, Shen B, Huang S, Lin F, Ma N, Xu F J, Wang P and Yao J Q 2009 Chin. Phys. B 18 1618
[6] Huang S, Shen B, Lin F, Ma N, Xu F J, Miao Z L, Song J, Lu L, Liu F, Wang Y, Qin Z X, Yang Z J and Zhang G Y 2008 Appl. Phys. Lett. 93 172102
[7] Kim M H, Lee S N, Huh C, Park S Y, Han J Y, Seo J M and Park S J 2000 Phys. Rev. B 61 10966
[8] Yu E T, Sullivan G J, Asbeck P M, Wang C D, Qiao D and Lau S S 1997 Appl. Phys. Lett. 71 2794
[9] Mohney S E and Lin X 1996 J. Electron. Mater. 25 811
[10] Gasser S M, Kolawa E and Nicolet M A 1999 J. Vac. Sci. Technol. A 17 2642
[11] Arulkumaran S, Egawa T, Ishikawa H, Umeno M and Jimbo Takashi 2001 IEEE Trans. Electron. Dev. 48 573
[12] Hsu C Y, Lan W H and Wu Y C 2003 Appl. Phys. Lett. 83 2447
[13] Zhao D G, Zhang S, Liu W B, Hao X P, Jiang D S, Zhu J J, Liu J S, Wang H, Zhang S M, Yang H and Wei L 2010 Chin. Phys. B 19 057802
[14] Markovski S L, Pleumeekers M C L P, Kodentsov A A and van Loo F J J 1998 J. Alloy. Compd. 268 188
[15] Zhang H, Miller E J and Yu E T 2006 J. Appl. Phys. 99 023703
[16] Arulkumaran S, Egawa T, Ishikawa H and Jimbo T 2003 Appl. Phys. Lett. 82 3110
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[3] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[4] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[5] Induced current of high temperature superconducting loops by combination of exciting coil and thermal switch
Jia-Wen Wang(王佳雯), Yin-Shun Wang(王银顺), Hua Chai(柴华), Ling-Feng Zhu(祝凌峰), and Wei Pi(皮伟). Chin. Phys. B, 2022, 31(3): 037402.
[6] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[7] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[8] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[9] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[10] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[11] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[12] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[13] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[14] Compact ultra-narrowband superconducting filter using N-spiral resonator with open-loop secondary coupling structure
Lin Tao(陶琳), Bin Wei(魏斌), Xubo Guo(郭旭波), Hongcheng Li(李宏成), Chenjie Luo(骆晨杰), Bisong Cao(曹必松), Linan Jiang(姜立楠). Chin. Phys. B, 2020, 29(6): 068502.
[15] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
No Suggested Reading articles found!