Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 127401    DOI: 10.1088/1674-1056/19/12/127401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Filling dependence of correlation exponents and metal-Mott insulator transition in strongly correlated electron systems

Lin Ming-Xi(林明喜)a) and Qi Sheng-Wen(祁胜文)b)
a College of Physics and Electronics, Shandong Normal University, Jinan 250014, China; b Department of Physics, Zhejiang Ocean University, Zhoushan 316000, China
Abstract  Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model in a strong coupling regime, and demonstrates that in contrast to the usual Hubbard model (gc=1/2), the dimensionless coupling strength parameter gc heavily depends on the electron filling, and it has a "particle–hole" symmetry about electron quarter filling point. As increasing the nearest neighbouring repulsive interaction, the single particle spectral weight is transferred from low energy to high energy regimes. Moreover, at electron quarter filling, there is a metal-Mott insulator transition at the strong coupling point gc=1/4, and this transition is a continuous phase transition.
Keywords:  strong correlation      correlation effect      correlation exponent      correlation function  
Received:  23 January 2010      Revised:  02 July 2010      Accepted manuscript online: 
PACS:  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774152), the Natural Science Foundation of Zhejiang Province of China (Grant No. Y1100088), and the Founding of Zhejiang Ocean University.

Cite this article: 

Lin Ming-Xi(林明喜) and Qi Sheng-Wen(祁胜文) Filling dependence of correlation exponents and metal-Mott insulator transition in strongly correlated electron systems 2010 Chin. Phys. B 19 127401

[1] Berdnorz J G and Müller K A 1986 Z. Phys. B 64 189
[2] Keiss H G 1990 Conjugated Conducting Polymers (Berlin: Springer-Verlag) p. 38
[3] Anderson P W 1987 Science 273 1196
[4] Anderson P W 1993 Phys. Rev. Lett. 71 1220
[5] Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759
[6] Feng W G and Sun X 1988 Chin. Phys. 8 382
[7] Yu E X, Sun X and Qian Y J 1987 Chin. Phys. 7 525
[8] Lieb E H and Wu F Y 1968 Phys. Rev. Lett. 20 1445
[9] Emery V J 1979 Highly Conducting One-Dimensional Solids (New York: Plenum) p. 47
[10] Mila F and Zotos X 1993 Europhys. Lett. 24 133
[11] Penc K and Mila F 1994 Phys. Rev. B 49 9670
[12] Clay R T, Sandvik A W and Campbell D K 1998 Phys. Rev. B 59 4665
[13] Fowler M 1978 Phys. Rev. B 17 2989
[14] Schulz H J 1990 Phys. Rev. Lett. 64 2831
[15] Schulz H J 1991 Int. J. Mod. Phys. B 5 57
[16] Ogata M and Shiba H 1990 Phys. Rev. B 41 2326
[17] Parola A and Sorella S 1990 Phys. Rev. Lett. 64 1831
[18] Ren Y and Anderson P W 1993 Phys. Rev. B 48 16662
[19] Luther A and Peschel I 1974 Phys. Rev. B 9 2911
[20] Sólyom J 1979 Adv. Phys. 28 201
[21] Haldane F D M 1981 J. Phys. C 14 2585
[22] Affleck I and Ludwig A W W 1994 J. Phys. A 27 5375
[23] Lin H Q 1995 Proceedings of the 1993 NATO ARW on the Physics and Mathematical Physics of the Hubbard Model (New York: Plenum) p. 106
[24] Gómez-Santos G 1995 Proceedings of the 1993 NATO ARW on the Physics and Mathematical Physics of the Hubbard Model (New York: Plenum) p. 139
[25] Luther A and Peschel I 1975 Phys. Rev. B 12 3908
[26] Johnson J D and McCoy B M 1972 Phys. Rev. A 4 1613
[27] Liu Y L 2002 Int. J. Mod. Phys. B 16 773
[28] Liu Y L 2002 Int. J. Mod. Phys. B 16 2201
[29] Liu Y L 2002 Int. J. Mod. Phys. B 16 4127
[30] Liu Y L 2003 Phys. Rev. B 68 155116
[31] Sklyanin E K, Takhtadzhyan L A and Faddeev L D 1979 Theor. Math. Phys. 40 688
[32] Xie B S and Chen S G 1998 Acta Phys. Sin. (Overseas Edition) 7 670
[33] Cheng Q H, Cao L, Xu D H and Wu D J 2005 Chin. Phys. 14 1159
[34] Zhang J X, Li H, Song X G and Zhang J 2009 Chin. Phys. B 18 5259
[1] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[2] Intercalation of van der Waals layered materials: A route towards engineering of electron correlation
Jingjing Niu(牛晶晶), Wenjie Zhang(章文杰), Zhilin Li(李治林), Sixian Yang(杨嗣贤), Dayu Yan(闫大禹), Shulin Chen(陈树林), Zhepeng Zhang(张哲朋), Yanfeng Zhang(张艳锋), Xinguo Ren(任新国), Peng Gao(高鹏), Youguo Shi(石友国), Dapeng Yu(俞大鹏), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(9): 097104.
[3] Momentum distribution and non-local high order correlation functions of 1D strongly interacting Bose gas
EJKP Nandani, Xi-Wen Guan(管习文). Chin. Phys. B, 2018, 27(7): 070306.
[4] Ghost images reconstructed from fractional-order moments with thermal light
De-Zhong Cao(曹德忠), Qing-Chen Li(李清晨), Xu-Cai Zhuang(庄绪财), Cheng Ren(任承), Su-Heng Zhang(张素恒), Xin-Bing Song(宋新兵). Chin. Phys. B, 2018, 27(12): 123401.
[5] Equilibrium dynamics of the sub-Ohmic spin-boson model under bias
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060501.
[6] Dynamical correlation functions of the quadratic coupling spin-Boson model
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060502.
[7] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[8] Correlation effects on the fine-structure splitting within the 3d9 ground configuration in highly-charged Co-like ions
Xue-Ling Guo(郭学玲), Min Huang(黄敏), Jun Yan(颜君), Shuang Li(李双),Kai Wang(王凯), Ran Si(司然), Chong-Yang Chen(陈重阳). Chin. Phys. B, 2016, 25(1): 013101.
[9] The spin dynamics of the random transverse Ising chain with a double-Gaussian disorder
Liu Zhong-Qiang (刘中强), Jiang Su-Rong (姜素蓉), Kong Xiang-Mu (孔祥木). Chin. Phys. B, 2014, 23(8): 087505.
[10] Thermodynamic properties of Heisenberg magnetic systems
Qin Wei (秦伟), Wang Huai-Yu (王怀玉), Long Gui-Lu (龙桂鲁). Chin. Phys. B, 2014, 23(3): 037502.
[11] Spin-correlation function of the fully frustrated Ising model and ± J Ising spin glass on the square lattice
M Y Ali, J Poulter. Chin. Phys. B, 2013, 22(6): 067502.
[12] A first-principles study of the structural and elastic properties of orthorhombic and tetragonal Ca3Mn2O7
Zhang Wei (张玮), Tong Pei-Qing (童培庆). Chin. Phys. B, 2013, 22(6): 066201.
[13] Ballistic diffusion induced by non-Gaussian noise
Qin Li (覃莉), Li Qiang (李强). Chin. Phys. B, 2013, 22(3): 038701.
[14] Dynamics of one-dimensional random quantum XY system with Dzyaloshinskii–Moriya interaction
Li Yin-Fang (李银芳), Kong Xiang-Mu (孔祥木). Chin. Phys. B, 2013, 22(3): 037502.
[15] A comparative study on geometries, stabilities, and electronic properties between bimetallic AgnX (X=Au, Cu; n=1-8) and pure silver clusters
Ding Li-Ping(丁利苹), Kuang Xiao-Yu(邝小渝), Shao Peng(邵鹏), Zhao Ya-Ru(赵亚儒), and Li Yan-Fang(李艳芳) . Chin. Phys. B, 2012, 21(4): 043601.
No Suggested Reading articles found!